Студопедия — The role of time
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

The role of time






 

Time plays a crucial role in learning, inference, and prediction.

 

Let’s start with inference. Without using time, we can infer almost nothing from our tactile and auditory senses. For example if you are blindfolded and someone places an apple in your hand, you can identify what it is after manipulating it for just a second or so. As you move your fingers over the apple, although the tactile information is constantly changing, the object itself – the apple, as well as your high- level percept for “apple” – stays constant. However, if an apple was placed on your outstretched palm, and you weren’t allowed to move your hand or fingers, you would have great difficulty identifying it as an apple rather than a lemon.


 

The same is true for hearing. A static sound conveys little meaning. A word like “apple,” or the crunching sounds of someone biting into an apple, can only be recognized from the dozens or hundreds of rapid, sequential changes over time of the sound spectrum.

 

Vision, in contrast, is a mixed case. Unlike with touch and hearing, humans are able to recognize images when they are flashed in front of them too fast to give the eyes a chance to move. Thus, visual inference does not always require time-changing inputs. However, during normal vision we constantly move our eyes, heads and bodies, and objects in the world move around us too. Our ability to infer based on quick visual exposure is a special case made possible by the statistical properties of vision and years of training. The general case for vision, hearing, and touch is that inference requires time-changing inputs.

 

Having covered the general case of inference, and the special case of vision inference of static images, let’s look at learning. In order to learn, all HTM systems must be exposed to time-changing inputs during training. Even in vision, where static inference is sometimes possible, we must see changing images of objects to learn what an object looks like. For example, imagine a dog is running toward you. At

each instance in time the dog causes a pattern of activity on the retina in your eye. You perceive these patterns as different views of the same dog, but mathematically the patterns are entirely dissimilar. The brain learns that these different patterns mean the same thing by observing them in sequence. Time is the “supervisor”, teaching you which spatial patterns go together.

 

Note that it isn’t sufficient for sensory input merely to change. A succession of unrelated sensory patterns would only lead to confusion. The time-changing inputs must come from a common source in the world. Note also that although we use human senses as examples, the general case applies to non-human senses as well. If we want to train an HTM to recognize patterns from a power plant’s temperature, vibration and noise sensors, the HTM will need to be trained on data from those sensors changing through time.

 

Typically, an HTM network needs to be trained with lots of data. You learned to identify dogs by seeing many instances of many breeds of dogs, not just one single view of one single dog. The job of the HTM algorithms is to learn the temporal sequences from a stream of input data, i.e. to build a model of which patterns follow which other patterns. This job is difficult because it may not know when sequences start and end, there may be overlapping sequences occurring at the same time, learning has to occur continuously, and learning has to occur in the presence of noise.

 

Learning and recognizing sequences is the basis of forming predictions. Once an

HTM learns what patterns are likely to follow other patterns, it can predict the likely


next pattern(s) given the current input and immediately past inputs. Prediction is covered in more detail later.

 

We now will turn to the four basic functions of HTM: learning, inference, prediction, and behavior. Every HTM region performs the first three functions: learning, inference, and prediction. Behavior, however, is different. We know from biology that most neocortical regions have a role in creating behavior but we do not believe it is essential for many interesting applications. Therefore we have not included behavior in our current implementation of HTM. We mention it here for completeness.

 







Дата добавления: 2015-08-12; просмотров: 383. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия