Студопедия — ЯДЕРНАЯ ФИЗИКА. МОДЕЛИ АТОМНОГО ЯДРА. КАПЕЛЬНАЯ, ОБОЛОЧЕСНАЯ И ОБОБЩЕННАЯ МОДЕЛИ ЯДРА. ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ЯДЕРНОЙ ФИЗИКИ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЯДЕРНАЯ ФИЗИКА. МОДЕЛИ АТОМНОГО ЯДРА. КАПЕЛЬНАЯ, ОБОЛОЧЕСНАЯ И ОБОБЩЕННАЯ МОДЕЛИ ЯДРА. ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ЯДЕРНОЙ ФИЗИКИ






В современной физике есть год, который называют «годом чудес». Это 1932-й год. Одним из таких «чудес» этого года было открытие нейтрона и создание нейтронно-протонной модели атомного ядра. В результате произошло выделение из атомной физики самостоятельного, бурно развивающегося направления – ядерной физики.

Ядерная физика изучает структуру и свойства атомных ядер. Она исследует также взаимопревращения атомных ядер, происходящие в результате как радиоактивных распадов, так и различных ядерных реакций. К ядерной физике тесно примыкает физика элементарных частиц, физика и техника ускорителей заряженный частиц, ядерная энергетика.

Исследуя атомное ядро, ядерная физика использует различные теоретические модели, которые могут показаться противоречащими друг другу. Немецкий физик М. Борн предложил в 1936 г. гидродинамическую модель атомного ядра, согласно которой ядро уподобляется капле заряженной плотной жидкости, состоящей из интенсивно взаимодействующих между собой нуклонов (нейтронов и протонов). Как и в капле обычной жидкости, поверхность капли-ядра может колебаться, что

при некоторых условиях приводит к развалу ядра. Американский физик М.Гепперт-Майер и одновременно немецкий физик И. Йенсен разработали в 1950 г. оболочечную модель атомного ядра, в которой нуклоны ядра движутся независимо друг от друга в некоем усредненном поле ядерной силы. Подобно электронам в атоме, нуклоны заполняют различные оболочки, каждая из который характеризуется определённым значением энергии. Стремясь примирить взаимно исключающие исходные положения гидродинамической и оболочечной моделей, датские физики О. Бор и Б.Моттельсон, а также американский физик Дж. Рейнуотер разработали в начале 1950-х гг. так называемую обобщенную модель атомного ядра. Согласно этой модели, ядро состоит из сердцевины – устойчивой внутренней части (нуклоны целиком заполненных оболочек) и «внешних» нуклонов, движущихся в поле, создаваемом нуклонами сердцевины. Под влиянием внешних нуклонов сердцевина ядра может деформироваться, принимая форму вытянутого или, напротив, сплюснутого эллипсоида; может испытывать колебания.

Весьма важной составной частью ядерной физики является нейтронная физика. Она занимается ядерными реакциями, происходящими под действием нуклонов. Поскольку нейтрон электрически нейтрален, электрическое поле ядра-мишени не отталкивает его; поэтому даже медленные нейтроны могут беспрепятственно приблизится к ядру на расстояния, при которых начинают проявляться ядерные силы. Нейтронная физика исследует также взаимодействие очень медленных нейтронов с веществом (энергия таких нейтронов порядка 0,01 эВ и меньше). Получаемые в этих исследованиях данные по рассеянию нейтронов веществом используются для выявления атомной структуры и характера движения атомов в различных кристаллах, жидкостях и отдельных молекул.

Современная ядерная физика достаточно четко распадается на две органически взаимосвязанные «ветви» – теоретическую и экспериментальную ядерную физику.

Теоретическая ядерная физика «работает» с моделями атомного ядра и ядерных реакций; она опирается на фундаментальные физические теории, созданные в процессе исследования физики микромира. Экспериментальная ядерная физика использует богатейший арсенал современных исследовательских средств, включая в себя ядерные реакторы (как источники мощных пучков нейтронов), ускорители заряженных частиц (как источники пучков ускоренных электронов, протонов,ионов, а также мезонов и гиперонов), разнообразные детекторы частиц, возникающих в ядерных реакциях. Ядерно-физические исследования имеют огромное чисто научное значение, позволяя человеку глубже проникать в тайны строения материи. В то же время эти исследования необычайно важны и в практическом отношении (в ядерной энергетике, медицине и т.д.)

Для современного ядерного эксперимента характерны большие интенсивности потоков ускоренных заряженных частиц или нейтронов, позволяющие исследовать редкие ядерные процессы и явления, и одновременная регистрация нескольких частиц, испускаемых в одном акте ядерного столкновения. Множество данных, получаемых в одном опыте, требует использования ЭВМ, сопрягаемых непосредственно с регистрирующей аппаратурой. Сложность и трудоёмкость эксперимента приводит к тому, что его выполнение часто оказывается посильным лишь большим коллективам специалистов. Основные задачи экспериментальной ядерной физики:

1. Поиск элементарных составляющих, из которых образована вся окружающая материя.

2. Изучение сил, связывающих элементарные составляющие материи.

3. Описание движения частиц под действием известных сил.







Дата добавления: 2015-09-04; просмотров: 509. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия