Студопедия — Охлаждающие среды, их свойства и параметры
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Охлаждающие среды, их свойства и параметры






 

Охлаждающей средой называется среда с более низкой, чем у продукта, температурой, при контакте с которой происхо­дит теплообмен и снижается температура продукта. Возможно охлаждение и без непосредственного контакта со средой, когда продукт находится в упаковке.

К охлаждающим средам предъявляют ряд требований. Они не должны ухудшать товарный вид продуктов, иметь запах, быть ток­сичными, оказывать химическое воздействие на продукты и обо­рудование.

Охлаждающая среда с физической точки зрения может быть газообразной, жидкой, твердой и смешанной.

Газообразная охлаждающая среда. В холодильной обработке ихранении продовольственных товаров распространение получила воздушная среда как наиболее безопасная, технологичная и эко­номичная.

В комбинации с воздухом в качестве газовой охлаждающей среды на практике применяют также диоксид углерода, азот, модифи­цированную и регулируемую газовую среду.

Атмосферный воздух— это базовая смесь сухого возду­ха и водяных паров. В состав сухого воздуха входят азот (78 %), кислород (21 %), углекислый газ (0,02 — 0,03%), а также аргон, неон, гелий, водород. Количество водяного пара, содержащегося в 1 м3 воздуха, может колебаться от долей грамма до нескольких десятков граммов, что зависит от его температуры. Водяной пар в 1,6 раза легче воздуха.

Основными физическими величинами, характеризующими воз­дух как охлаждающую среду, являются температура, относитель­ная влажность, парциальное давление насыщенных паров, ско­рость движения воздуха.

Температура — термодинамическая величина, характеризую­щая тепловое состояние тела и определяющая степень его нагретости. Прямо пропорциональна кинетической энергии теплового движения молекул.

Относительная влажность воздуха характеризует степень его насыщения водяными парами и измеряется как отношение коли­чества водяного пара, содержащегося в 1 м3 воздуха, к макси­мальному количеству водяного пара, которое может содержаться в этом объеме при той же температуре. Относительную влажность выражают в процентах или относительных единицах.

Большинство продуктов животного и растительного происхож­дения содержит значительное количество воды, причем до 90 % ее находится в свободном виде в межклеточных пространствах и в составе ткани в виде мельчайших капель. Такая вода легко удаляет­ся из продукта и так же легко поглощается им, поэтому в камерах холодильной обработки и хранения воздух имеет высокую относи­тельную влажность. Она устанавливается в зависимости от соотно­шения влагопритоков от продуктов, через ограждения, дверные проемы и влагоотвода (конденсации) на охлаждающих приборах.

С повышением температуры воздуха увеличивается его влагоудерживающая способность. Поскольку вне камеры температуры обычно выше, то содержание влаги и парциальное давление так­же более высокие. Под действием разности парциальных давлений поток влаги через ограждающие конструкции направлен внутрь камер, а холодный воздух, содержащий меньшее количество во­дяных паров, — наружу. Соотношение количества влаги, посту­пившей в камеры вместе с теплым воздухом и ушедшей с холод­ным, определяет величину тепло- и влагопритока.

При естественных условиях парциальное давление насыщенных паров над поверхностью продуктов, как правило, выше, чем в воздухе холодильной камеры, что вызывает перенос влаги от про­дукта к воздуху и потерю массы продукта (усушку).

Перенос влаги вследствие испарения зависит и от скорости движения воздуха. При контакте с приборами охлаждения воздух, насыщенный водяными парами, отдает часть влаги, которая осе­дает на них в виде капель или инея. Процесс этот носит постоян­ный характер. Соотношение между количеством влаги, поступив­шей к воздуху в камере и отданной воздухом теплоотводящим охлаждающим поверхностям, определяет установившееся значе­ние относительной влажности воздуха в камере.

Масса испарившейся влаги G, кг, может быть определена по разности парциальных давлений у поверхности продукта и в окру­жающей среде:

 

G =β (P – P'φ) Fτ;,

 

где β; — коэффициент испарения, кг/(м2·Па·с); Р — парциаль­ное давление насыщенного пара у поверхности продукта, Па; Р' — парциальное давление насыщенного пара в окружающей среде, Па; φ; — относительная влажность воздуха в холодильной камере; F — площадь испаряющейся поверхности, м2; τ — продолжитель­ность процесса испарения, с.

В камерах длительного хранения продуктов поддерживают оп­тимальное значение относительной влажности путем автомати­ческого регулирования количества водяного пара, подаваемого в камеру.

Газообразный диоксид углерода может применять­ся при всех методах холодильной обработки, а также в сочетании с другими методами консервирования.

При атмосферном давлении диоксид углерода тяжелее воздуха, он имеет меньшую удельную теплоемкость — соответственно 0,837 и 1,0006 кДж/(кг·К) и коэффициент теплопроводности соответственно 0,0137 и 0,0242 Вт/(м·К). Плотность сухого льда 1,4—1,5 кг/дм3, а объемная холодопроизводительность — в три раза выше, чем водяного. При помощи диоксида углерода можно получить широкий диапазон температур, а в смеси с эфиром до -100°С.

На диаграмме равновесия фаз диоксида углерода (рис. 16) видны три линии, выходящие из одной точки а, называемой тройной. При параметрах, соответствующих этой точке = 5,28 • 10-5 Па, t= -56,6 °С), диоксид углерода может находиться сразу в трех состояниях, а ниже 5,28 · 10-5 Па — только в твердом и газообраз­ном. Это означает, что если к твердому диоксиду углерода подве­сти теплоту при давлении, меньшем указанного, то он перейдет в газообразное состояние, минуя жидкую фазу (сублимация). При дросселировании диоксида углерода с давления 2—3 МПа до ат­мосферного можно получить струю газообразной и мелкодисперсной(в виде снега) смеси температурой -79 °С. При разбрызгива­нии ее в камере и на продукты дополнительно создается сильная циркуляция и за счет испари­тельного эффекта отводится теп­лота, что способствует ускоре­нию охлаждения. Диоксид угле­рода тормозит развитие микро­организмов, что способствует созданию консервирующего эф­фекта при хранении продуктов. Степень его воздействия зави­сит от концентрации, темпера­туры среды и вида микроорга­низмов.

Рис. 16. Диаграмма равновесия фаз диоксида углерода:

1 — парообразная; 2 — твердая; 3 — жидкая; а — тройная точка

 

Холодильное хранение про­дуктов в сочетании с диоксидом углерода задерживает развитие плесневых грибов, бактерий, а эффективность процесса хране­ния определяется его темпера­турой. Консервирующее действие диоксида углерода усиливает по­варенная соль. Кроме того, он обладает хорошей растворимостью в жирах и продуктах с высоким содержанием жира, где находится в свободном состоянии, а при перемещении продукта в обычную среду легко выделяется. Растворяясь в жире, диоксид углерода вытесняет из него кислород, что способствует замедлению окис­ления жира при длительном хранении.

Перспективно применение диоксида углерода для замора­живания мяса в полутушах, охлаждения и замораживания мяса после обвалки в парном виде, охлаждения и замораживания мяса птицы, замораживания полуфабрикатов и формования фаршевых изделий, упаковки продуктов в среде диоксида угле­рода, охлаждения транспортных средств, реализации мороже­ного и т.д.

Газообразный азот для охлаждения и замораживания про­дуктов получают из жидкого азота, который хранится в специаль­ных резервуарах при давлении несколько выше атмосферного. Жидкий азот имеет температуру кипения -195,8 °С и в газообраз­ном виде позволяет понижать температуру в охлаждаемом объеме очень быстро и в широком диапазоне. Поскольку воздух на 78 % состоит из азота, физические свойства этих газов различаются мало. Так, азот имеет несколько меньшие плотность и коэффициент теплопроводности, а теплоемкость выше. Теплота фазового пре­вращения примерно в три раза ниже, чем у диоксида углерода. При охлаждении продуктов средний расход газообразного азота составляет 1 — 1,2 кг на 1 кг продукта, а с учетом сравнительно высокой стоимости его применяют для хранения особо ценных Продовольственных товаров (либо при отсутствии энергии). В тоже время его применение достаточно эффективно при предвари­тельном охлаждении плодов и транспортировании безмашинным холодильным транспортом. При охлаждении, транспортировании I и хранении продуктов принимают меры для предотвращения под­мораживания. С этой целью газ низкой температуры в специаль­ном резервуаре перемешивают с газом из охлаждаемого помеще­ния, понижая его температуру до необходимой. При использова­нии газообразного азота, так же как и диоксида углерода, резко сокращается содержание кислорода, что тормозит развитие мик­роорганизмов и окислительные процессы.

Жидкая охлаждающая среда. В качестве жидких охлаждающих сред для охлаждения продуктов используют ледяную воду и сла­бые солевые растворы, а для замораживания — водные растворысолей высокой концентрации, гликоли, жидкие азот, диоксид углерода и воздух, хладоны и т.д.

Жидкие среды обладают большей теплопроводностью и теплоемкостью, чем газообразные, поэтому при их применении суще­ственно сокращается продолжительность холодильной обработки продуктов.

Для охлаждения продуктов до температуры, близкой к 0°С, применяют чистую ледяную воду. Охлаждают продукты методами погружения или орошения. Эти способы достаточно эффективны для охлаждения птицы, рыбы, плодов.

Более низкие температуры можно получить при использовании слабых солевых растворов — морской воды и слабых растворов хлорида натрия, магния, кальция. Температура замерзания морс­кой воды в зависимости от содержания в ней солей колеблется от -1,5 до -3 °С. Лучшие результаты дает добавление льда в холоднуюводу.

Продолжительность охлаждения в холодной воде зависит от вида и объема продукта, температуры воды, скорости ее циркуляции и составляет от нескольких минут до нескольких часов.

Для замораживания продуктов применяют водные растворы со­лей высокой концентрации. При повышении концентрации соли температура их замерзания понижается. Самая низкая температу­ра их замерзания называется криогидратной, а соответствующая концентрация соли — эвтектической. Такое состояние является следствием термодинамического равновесия трех фаз — раствора, соли и льда. С дальнейшим повышением содержания соли в смеси температура плавления не понижается, а повышается.

На практике применяют водные растворы солей хлорида на­трия, магния и кальция, которые при эвтектической концентра­ции имеют минимальную температуру замерзания — соответствен­но -21,2, -33,6 и -55 °С. Ограниченно используют также растворы сульфата натрия, цинка и хлорида калия, криогидратная темпе­ратура которых составляет соответственно -1,2, -6,5 и -11,1 °С.

Хлорид натрия дешев, обладает высокой теплопроводностью, но имеет большую коррозионную способность, при заморажива­нии неупакованных продуктов частично их просаливает; к тому же он весьма токсичен, что ограничивает применение растворов этих солей. Как правило, их используют в закрытых системах ох­лаждения, которые меньше подвержены коррозии благодаря бо­лее низкому содержанию кислорода и применению специальных добавок — пассиваторов (силикат натрия, хромовая смесь и др.), уменьшающих коррозию. Наибольшее применение они находят в безмашинных способах охлаждения холодоаккумуляторами с эв­тектическим раствором (эвтектические плиты) на холодильном транспорте, а также при рассольном охлаждении в старых систе­мах охлаждения больших холодильников.

Гликоли — жидкости, водные растворы которых имеют низ­кую температуру замерзания. Гликоли менее агрессивны по от­ношению к металлам, но более вязки и менее теплопроводны. Этиленгликоль слабо ядовит, без запаха, смешивается с водой в любых соотношениях, температура замерзания чистого этиленгликоля -17,5°С, а его 70%-ного раствора в воде -67,2°С. Пропиленгликоль в водных растворах не взаимодействует с металлами, нетоксичен. Эти хладоносители очень эффективны для быстрого замораживания продуктов небольшой массы в упакованном виде.

Для замораживания продуктов до -40 °С можно использовать также дихлорметан, представляющий собой бесцветную жидкость, почти нерастворимую в воде, с температурой замерзания -6°С. К его недостаткам относятся небольшая теплоемкость и горючесть.

Жидкий азот применяют для замораживания особо ценных про­дуктов орошением или погружением, а также для получения газо­образного азота и его использования в смеси с воздухом. Темпера­тура кипения жидкого азота -195,6°С, поэтому между заморажива­емым продуктом и охлаждающей средой создается большой темпе­ратурный перепад, что значительно интенсифицирует процесс. Ана­логично используют жидкие диоксид углерода, воздух, хладоны.

Твердая охлаждающая среда. К твердым охлаждающим средам относят водный лед, смесь льда и соли (льдосоляное охлажде­ние), сухой лед.

Водный лед, полученный из пресной и морской воды, исполь­зуют для охлаждения, хранения и транспортирования продуктов питания.

Широкое применение льда в качестве охлаждающей среды объяс­няется прежде всего его физическими свойствами, а также эконо­мическими факторами. Температура плавления водного льда при ат­мосферном давлении 0 °С, удельная теплота плавления 334,4 Дж/кг, плотность 0,917 кг/м3, удельная теплоемкость 2,1 кДж/(кг • К), теплопроводность 2,3 Вт/(м · К). При переходе воды из жидкого состояния в твердое (лед) происходит увеличение объема на 9 %.

Естественный лед заготавливают путем вырезания или выпи­ливания крупных блоков изо льда, образовавшегося на естествен­ных водоемах, послойного намораживания воды на горизонталь­ных площадках, наращивания сталактитов в градирнях. (Особым спросом для пищевых целей пользуется гренландский и антарк­тический лед как наиболее чистый. Возраст гренландского льда более 100 000 лет.) Лед хранят на площадках в буртах, укрытых насыпной изоляцией, и в льдохранилищах с постоянной и вре­менной теплоизоляцией.

Искусственный лед получают путем замораживания чистой пресной или морской воды в льдогенераторах. Качество льда, его форма, размер и способ получения, хранения и доставки потре­бителю обусловлены назначением и спецификой применения.

Матовый лед изготавливают из питьевой воды без какой-либо ее обработки в процессе замораживания. В отличие от естествен­ного он имеет молочный цвет, обусловленный наличием большо­го количества пузырьков воздуха, которые образуются в процессе превращения воды в лед. Пузырьки уменьшают проницаемость льда для световых лучей, и он становится непрозрачным.

Прозрачный лед по виду напоминает стекло. Для его получения в форму наливают воду и при помощи форсунок продувают через нее сжатый воздух. Проходя через замораживаемую воду, он захватывает и увлекает за собой пузырьки воздуха. Прозрачный лед изготавливают в виде кусков небольших размеров и использу­ют для охлаждения напитков.

Лед с бактерицидными добавками предназначен для охлаждения рыбы, мяса, птицы и некоторых видов овощей путем непос­редственного соприкосновения с ними. Бактерицидные добавки снижают обсемененность продуктов микроорганизмами.

В зависимости от формы и массы искусственный лед бывает блочный (5 — 250 кг), чешуйчатый, прессованный, трубчатый и снежный.

Блочный лед дробят на крупный, средний и мелкий.

Чешуйчатый лед получают путем напыления воды на вращаю­щийся барабан, плиту или цилиндр, являющиеся испарителями хладагента. Вода на поверхности барабана быстро замерзает, а об­разовавшийся лед при его вращении срезается фрезами или но­жом. Льдогенераторы производят от 60 до 5000 кг/сут такого льда. Чешуйчатый лед эффективен при охлаждении рыбы, мясных из­делий, зеленых овощей, некоторых плодов. Наибольший коэффи­циент теплоотдачи достигается, когда при охлаждении продукты плотно соприкасаются со льдом.

В результате смешивания дробленого водного льда с различными солями помимо теплоты таяния льда поглощается теплота растворения соли в воде, что позволяет существенно понизить температуру смеси. Раствор может быть охлажден до криогидратной точки.

Льдосоляное охлаждение осуществляют как контактным, так и бесконтактным способом.

Недостатком контактного льдосоляного охлаждения является просаливание продукта, которое при длительном хранении сти­мулирует окисление жира, вызывает снижение товарного вида и потребительских достоинств. Бесконтактное льдосоляное охлаждение в виде полых плит с эвтектическими растворами позволяет избежать этих недостатков.

Сухой лед — твердый диоксид углерода. Производство сухого льда состоит из трех последовательных стадий: получения чистого газообразного диоксида углерода, сжижения его до образования снегообразной массы и прессования последней блоками плотнос­тью 1400— 1500 кг/м3. Различают его производство по циклу высо­кого, среднего и низкого давлений.

Сухой лед из жидкого диоксида углерода также получают дву­мя способами: дросселированием жидкого диоксида углерода по давлению тройной точки с последующим прессованием рыхлого влажного снега в блоки сухого льда; дросселированием до атмосферного давления с уплотнением блока льда в процессе льдооб­разования. Как охлаждающая среда он имеет значительные пре­имущества перед водным льдом: холодопроизводительность на еди­ницу массы в 1,9, а на единицу объема в 7,9 раза больше; при атмосферном давлении сухой лед переходит в газообразное состо­яние-, минуя жидкую фазу, что исключает увлажнение поверхно­сти продукта. Благодаря низкой температуре сублимации сухого льда (-78,9 °С) и выделению газообразного диоксида углерода понижается концентрация кислорода у поверхности продукта, со­здаются неблагоприятные условия для жизнедеятельности микро­организмов.

Сухой лед укладывают поверх и между упаковок продуктов и используют как охлаждающую среду для хранения мороженого, фруктов, ягод. Сухой дробленый лед используют в специальных системах охлаждения, для чего его помешают в металлические емкости. Продукты сублимации льда отводят в грузовой объем помещения или наружу.

Прямым эжектированием жидкого диоксида углерода получа­ют твердый гранулированный, или снегообразный, диоксид уг­лерода, который используют для охлаждения упакованных про­дуктов (мясных, рыбных, овощных).

В многоплиточных и конвейерных морозильных аппаратах в качестве теплопередающей среды используют различные металлы в виде полых плит, внутри которых циркулирует промежуточный хладоноситель. Металлы имеют высокую тепло- и температуро­проводность и, непосредственно соприкасаясь с продуктом, ин­тенсифицируют теплообмен. Наиболее широко применяют сталь, чугун, медь, алюминий и алюминиевые сплавы.

В качестве охлаждающей взвешенной в воздухе промежуточной теплопередающей среды при флюидизационном способе замора­живания применяют мелкодробленый лед, полимерные шарики, а также композиции (например, смесь, состоящую из манной крупы, сахара, соли и мелкодробленого льда). Такая среда под воздействием направленного вверх с небольшой скоростью воздуш­ного потока, создаваемого вентиляторами, превращается в кипя­щий слой, через который движется замораживаемый продукт. Та­ким способом замораживают ягоды, овощи, полуфабрикаты.







Дата добавления: 2015-09-04; просмотров: 2123. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия