Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Площа плоскої фігури


Дата добавления: 2015-09-19; просмотров: 1131



Изучение двух новых арифметических действий — умножения и деления — является основой курса математики 2 класса. Главный залог успешного усвоения этого материала — глубокое и осмысленное понимание детьми конкретного смысла этих действий, раскрытие связи умножения с уже изученным действием — сложением.

Подготовительная работа к введению новых действий начинается в конце первого года обучения, при изучении сложения и вычитания чисел первого и второго десятков. Она сводится к решению соответствующих примеров и задач с опорой на действия с предметными множествами. В процессе такой работы учащиеся осознают роль группового счёта (двойками, тройками и т. д.), усваивают его способы, решают примеры на нахождение суммы одинаковых слагаемых.

Желательно предлагать второклассникам задания практического содержания, подобранные с учётом их жизненного опыта. Например, нужно сосчитать, сколько новогодних шаров в коробке с ячейками. В коробке два ряда ячеек, по четыре ячейки в каждом ряду. Дети рассматривают несколько вариантов (шары можно считать по одному, по два или по четыре), записывают решение и выясняют, что группами, т. е. в данном случае парами или четвёрками, считать удобнее. Учащиеся приводят примеры из жизни, когда ведётся счёт по группам: по два (парами), по три (тройками) и т. д.

Особое внимание в этот период должно быть уделено и абстрактному счёту по группам (например: «Считайте по 2 до 20»), а также выполнению практических заданий на нахождение суммы одинаковых слагаемых или деление по содержанию и на равные части.

Аналогично можно предлагать и сюжетные задачи.

Введению действий умножения и деления во 2 классе предшествует ряд подготовительных уроков, которые имеют весьма большую образовательную ценность. Так, раскрытие конкретного смысла названных действий предполагается проводить с опорой на понятие числовой луч, которое является новым для учащихся. С этой целью первые два урока раздела «Умножение и деление» отведены изучению темы «Направления и лучи». Основная цель этих уроков состоит в том, чтобы познакомить учащихся с понятием луч, научить их отличать луч от отрезка на чертеже, чертить луч, а также закрепить навыки устного счёта и умение решать задачи.

На основе рассмотрения понятных для учащихся примеров из жизни: луч фонарика, луч света, направление движения и т. д. — достигается необходимый уровень абстракции, позволяющий ввести понятия направлениеи луч, познакомить учащихся с их графической интерпретацией и свойствами.

Ключевым этапом подготовительной работы к изучению действия умножения является выполнение учащимися заданий на нахождение суммы нескольких одинаковых слагаемых. Отличие предлагаемой методики состоит в том, что наряду с традиционными заданиями на выявление суммы одинаковых слагаемых и нахождение её значения

в учебник включён ряд новых упражнений с опоройна числовой луч.

На этом этапе важно, чтобы учащиеся умели не только записывать и выделять среди данных суммы с одинаковыми слагаемыми, но и вычислять их значения с помощью числового луча, а главное, чтобы они всегда могли ответить на вопросы: какое число в сумме повторяется? сколько раз оно повторяется?

В целях пропедевтики действий умножения и деления на достаточно простых заданиях игрового и занимательного характера с опорой на наглядность учащимся разъясняется, что с помощью числового луча удобно находить суммы одинаковых слагаемых и разбивать число на сумму одинаковых слагаемых. При этом, например, разъясняется, что запись 2 + 2 + 2 означает: по 2 взять 3 раза, а запись 8 = 2 + 2 + 2 + 2 можно прочитать так: число 8 — это 4 раза по 2.

Попутно с этим материалом учащиеся знакомятся с обозначением луча, понятиями угла, многоугольника и их обозначениями.

Умножение рассматривается как нахождение суммы одинаковых слагаемых. Для ознакомления с этим действием желательно предложить задачу, которую легко проиллюстрировать.

Здесь важно обратить внимание учащихся на то, что на первом месте записано число, которое надо взять слагаемым, а на втором месте — число, которое показывает, сколько одинаковых слагаемых надо взять.

При объяснении смысла нового действия — умножения — необходимо делать акцент на целесообразности замены суммы нескольких одинаковых чисел произведением двух чисел, одно из которых — слагаемое, которое повторяется, а другое — количество таких слагаемых. Например, рассуждения учащихся при вычислении суммы

3 + 3 + 3 + 3 + 3 + 3 могут быть такими: «Слагаемые в сумме одинаковые: слагаемое 3 беру 6 раз. Заменю сумму произведением. Пишу 3, затем знак умножения и 6. По 3 взять 6 раз, получится 18».

При решении задач на нахождение произведения учащиеся должны усвоить, что если получается сумма одинаковых слагаемых, то задачу можно решить умножением. Важно при этом понимать, что означает каждое число в такой записи.

Например, предлагается задача: «Три девочки вырезали по 2 снежинки каждая. Сколько всего снежинок вырезали девочки?»

При анализе текста задачи следует разъяснить учащимся, что значит в данном условии слово каждая (т. е. одна девочка вырезала 2 снежинки, другая — 2 снежинки и третья — 2 снежинки). После инсценировки этой задачи с помощью учениц класса дети подводятся к выбору действия для решения задачи. Далее учитель поясняет: «Было 3 девочки (называет их имена), каждая вырезала по 2 снежинки (учитель даёт каждой девочке по 2 снежинки). Как узнать, сколько всего снежинок вырезали девочки?»

Сначала задачу надо решить сложением: 2 + 2 + + 2 = 6 (е.). Затем, опираясь на знания учащихся о том, что умножение — это сложение одинаковых слагаемых, учитель выясняет, каким ещё действием можно записать решение задачи. Затем учитель выясняет, каким еще действием можно записать решение задачи. Затем учитель проводит такую беседу:

- Чем интересна сумма 2 + 2 + 2? Что вы заметили? (Слагаемые одинаковые.)

- Сколько одинаковых слагаемых в сумме? (Три.)

- Каким одним действием можно записать решение этой задачи? (Умножением.)

- Запишите решение задачи умножением. (2 • 3 = = 6 (с.).)

После решения задач с опорой на предметную деятельность следует перейти к решению задач такого же вида с опорой на иллюстрацию (или на символические изображения предметов). Например: «В каждом ряду по 6 парт. Сколько всего парт в 3 таких рядах?»

Задачу можно проиллюстрировать с помощью квадратов, что поможет учащимся быстро найти решение: б • 3 = 18 (п.). Заметим, что на начальном этапе выполнение рисунка к задаче на нахождение произведения очень полезно хотя бы потому, что помогает учащимся не только лучше уяснить условие задачи, но и разобраться, какое данное обозначает количество стульев в каждом ряду, а какое — количество рядов. В связи с этим весьма полезными являются упражнения на подбор к условию задачи рисунка из ряда предложенных. Например, учащимся предлагается задача: «В одной коробке 4 мяча. Сколько мячей в 3 таких коробках?» — и несколько иллюстраций к ней. Учащимся необходимо найти среди них подходящую.

Заметный обучающий эффект дают также и упражнения на иллюстрацию с помощью предметных множеств или рисунка заданного произведения. Например: «Нарисуйте снежинки и расположите их так, чтобы количество снежинок можно было вычислить с помощью произведения 5-4*. В дальнейшем, когда учащиеся познакомятся с переместительным свойством умножения, эти задания снова можно использовать для проверки понимания смысла выполняемых действий и предупреждения формализма в знаниях учащихся.

Конкретный смысл действия деления раскрывается при решении задач на деление по содержанию и на равные части. Сначала вводятся задачи на деление по содержанию, а затем задачи на деление на равные части. Это обусловлено тем, что практически легче выполнить операции над множествами при решении задач на деление по содержанию, чем при решении задач на деление на равные части. Кроме того, операции, выполняемые при решении задач на деление на равные части, включают действия, выполняемые при решении задач на деление по содержанию.

Ознакомление учащихся с задачами на деление желательно провести с опорой на предметную деятельность. На специально отведённом уроке пропедевтического характера учитель создаёт в классе определённые жизненные ситуации и ставит перед учащимися задачи, для решения которых необходимо произвести операцию деления по содержанию или на равные части. На этом уроке все действия выполняются только на предметном уровне или с опорой на весьма конкретную наглядность в виде рисунков и схем. В дальнейшем так называемый подход обучения «от рук к голове» будет использоваться достаточно часто, с тем чтобы сформировать у учащихся необходимые ассоциативные связи и облегчить им понимание смысла действия деления. На этом этапе решение задач на деление ограничивается лишь наглядной иллюстрацией и устными ответами. Когда же учащиеся познакомятся со знаком деления и научатся читать и записывать примеры на деление, решение надо оформить письменно.

У детей может сложиться представление о двух видах деления (по содержанию и на равные части). Чтобы предупредить это, учитель на специально отведённом уроке должен провести следующую работу: предложить учащимся решить две задачи — задачи на деление по содержанию и на равные части — и сравнить их. С этой целью лучше предлагать задачи с одинаковыми числовыми данными.

Например:

1. 12 апельсинов разложили в пакеты, по 3 апельсина в каждый. Сколько пакетов понадобилось?

2. 12 апельсинов разложили поровну в 3 пакета. Сколько апельсинов в одном пакете?

Учащиеся должны обратить внимание на сходство и различие записей решения этих задач (действия одинаковые, а наименования в ответе разные).

Взаимосвязь между компонентами и результатами действий умножения и деления раскрывается на основе составления и решения задач по рисунку.

- Чем похожи эти задачи? (Одинаковые числовые данные.)

- Чем эти задачи различаются? (Одна задача решается умножением, две другие — делением).

- Прочитайте решение первой задачи, называя компоненты и результат действия. (Первый множитель 3, второй множитель 4, произведение равно 12.)

Вывод. Если произведение двух чисел разделить на один из множителей, то получится другой множитель.

Для закрепления материала можно предложить задания вида «К примеру 8-2 = 16 составьте два примера на деление».

Аналогичные задания на закрепление знания действий умножения и деления и их взаимосвязи желательно как можно чаще включать в содержание урока, особенно на этапе устного счёта.

К концу 2 класса учащиеся должны научиться быстро решать простые задачи на деление и умножение всех рассмотренных видов.


<== предыдущая лекция | следующая лекция ==>
САМОСТІЙНА РОБОТА №9 | Зразок виконання типового варіанта
1 | <== 2 ==> |
Studopedia.info - Студопедия - 2014-2025 год . (0.211 сек.) російська версія | українська версія

Генерация страницы за: 0.211 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7