Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






КОНСТРУКЦІЯ ДОМЕННОЇ ПЕЧІ


Дата добавления: 2014-12-06; просмотров: 864




Х

Х

2.2. Плоскость общего положения - плоскость, не параллельная и не перпендикулярная плоскостям проекций.

Х

X

 

 


 

2.3. Взаимное расположение прямой и точки.

Если точка лежит на прямой, то ее проекции принадлежат одноименным проекциям этой прямой.

 
 


m2

 

Х

 

 

m1

2.4. Взаимное положение прямых в пространстве.

2.4.1 Пересекающиеся прямые, точки пересечения одноименных проекций, которых лежат на одной линии связи.

 

Х

 

 

2.4.2. Параллельные прямые, проекции которых на плоскость параллельны (т.е. если на эпюре одноименные проекции прямых параллельны, то прямые параллельны в пространстве).

 

Х


2.4.3. Скрещивающиеся прямые. Конкурирующие точки.

Скрещивающиеся прямые - прямые, не параллельные друг другу и не пересекаются между собой. Точки пересечения их одноименных проекций не лежат на одной линии проекционной связи.

 

Х

 

Точки C и D; M и N - называются конкурирующими. С их помощью определяется видимость элементов на чертеже. Проекции этих точек С1 и D1 , M2 и N2 совпадают, т.к. в пространстве они лежат на одном перпендикуляре к П1 и П2 соответственно. Проекции этих перпендикуляров и проекции точек на них позволяют установить, что точка С расположена выше и на горизонтальной проекции (виде сверху) она будет видима, при этом закрывая точку D. В свою очередь точка N расположена ближе к нам (точки M1 и N1) и на П2 (виде спереди) она будет видима, закрывая точку М.

2.4.4. Взаимно - перпендикулярные прямые.

ТЕОРЕМА. Если одна из сторон, образующих прямой угол параллельна плоскости проекций, то на данную плоскость прямой угол проецируются в натуральную величину. Однако, когда плоскость угла перпендикулярна плоскости проекций, то угол проецируется на эту плоскость в виде прямой линии.

 

 

Х

 

 


2.5. Определение натуральной величины отрезка прямой линии и углов наклона его к плоскостям проекций.

Натуральная величинаотрезка - это гипотенуза прямоугольного треугольника, одним катетом которого является проекция, а другим катетом - разность расстояний от концов отрезка до плоскости, на которой выбрана проекция (1-й катет). Угол между натуральной величиной отрезка и проекцией - есть угол наклона прямой к плоскости, на которой выбрана проекция этого отрезка.

А2

В2

Х

В1

А1


2.6. Прямая и точка , принадлежащие плоскости.

АКСИОМЫ:

1. Прямая принадлежит плоскости, если две ее точки принадлежат плоскости.

2. Точка принадлежит плоскости, если она лежит на прямой, принадлежащей этой плоскости.

Пример 1. Построить горизонтальную проекцию прямой m, принадлежащей плоскости (a // b).

m2 a2

B2

x

A1

 

B1

Пример 2. Найти недостающую проекцию точки D, принадлежащей плоскости АВС.

B2

 

 

· D2

A2 C2

X

C1

A1

 

 

В1


 

2.7. Пирамида и точки на ее поверхности.

Пример. Построить профильную проекцию пирамиды и найти

недостающие проекции точек, лежащих на ее поверхности.

Z

Х У

 
 


У


Тема 3.СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА.

ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПЛОСКОСТЬ.

3.1. Способ замены плоскостей проекций.

Сущность способа замены плоскостей проекций заключается в том, что, оставляя неподвижными геометрические элементы, плоскости проекций заменяются новыми, позволяющими получить частное положение элементов с целью упрощения решения тех или иных задач.

 
 


П2

А2 А

 

 

В2 В

А1

 

В1

П1

 

Х

А2 Пример 1. Определить

натуральную величину

отрезка АВ.

В2

 

 

Х

А1

 

В1

 


Пример 2.Определить натуральную величину АВС. B2


 

С2

А2

Х С1

 

А1

В1

 


ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПЛОСКОСТЬЮ.

Для нахождения точек пересечения прямой с плоскостью надо:

¨ Заключить прямую во вспомогательную (проецирующую) плоскость;

¨ Построить линию пересечения плоскостей (ЛПП) вспомогательной и заданной (вспомогательной плоскостью и поверхностью);

¨ Найти точки пересечения прямой с плоскостью (поверхностью) как точки пересечения ЛПП и заданной прямой;

¨ Определить видимость прямой.

Пример 1. Найти точку пересечения прямой ас плоскостью АВСD.

 

 

В2 а2

 

С2

 

 

D2

Х А2

В1

 

А1

 

С1

А1 D1

 


Тема 4. ПОВЕРХНОСТИ. ГРАННЫЕ ПОВЕРХНОСТИ И МНОГОГРАННИКИ. ПОВЕРХНОСТИ ВРАЩЕНИЯ.

4.1 Гранные поверхности и многогранники.

Решение задач с многогранниками сводится к построению проекций характерных точек.

Пример. Построить проекции сквозного призматического отверстия в пирамиде.

Z

 

ХУ

 

У

 


4.2. Криволинейные поверхности.

Такие поверхности, как правило, задаются кинематическим способом.

Линейчатая поверхностьформируется при движении прямой линии по произвольной направляющей:

- образующая

- направляющая

 
 

 


Цилиндрическая поверхностьобразуется при движении образующей параллельно самой себе или какому-либо направлению.

 

Нелинейчатая поверхностьобразуется при движении кривой линии.

 

 


 

4.3. Поверхности вращения.


<== предыдущая лекция | следующая лекция ==>
ОПИС КОМПЛЕКСУ ОБЛАДНАННЯ ДОМЕННОЇ ПЕЧІ | ЧАСТИНИ ТА ПРИСТРОЇ ДОМЕННОЇ ПЕЧІ
1 | 2 | 3 | <== 4 ==> | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
Studopedia.info - Студопедия - 2014-2024 год . (0.184 сек.) російська версія | українська версія

Генерация страницы за: 0.184 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7