Головна сторінка Випадкова сторінка КАТЕГОРІЇ: АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія |
Стилі керівництваДата добавления: 2015-10-15; просмотров: 664
Сюда относится использование байесовского формализма в системах правил и сетевых моделях. Байесовские сети – это статистический метод обнаружения закономерностей в данных. Для этого используется первичная информация, содержащаяся либо в сетевых структурах либо в базах данных. Под сетевыми структурами понимается в этом случае множество вершин и отношений на них, задаваемое с помощью ребер. Содержательно, ребра интерпретируются как причинные связи. Всякое множество вершин Z, представляющее все пути между некоторыми двумя иными вершинами X и Y соответствует условной зависимости между этими двумя последними вершинами. Рис. 1.1 Байесовская сеть Далее задается некоторое распределение вероятностей на множестве переменных, соответствующих вершинам этого графа и полученная, но минимизированная (в некотором смысле) сеть называется байсовской сетью (см. рис.1.1). На такой сети можно использовать, так называемый байесовский вывод, т.е. для вычисления вероятностей следствий событий можно использовать (с некоторой натяжкой) формулы теории вероятностей. Иногда рассматриваются так называемые гибридные байесовские сети, с вершинами которых связаны как дискретные, так и непрерывные переменные. Байесовские сети часто применяются для моделирования технических систем. 2. Приобретение знаний, машинное обучение и автоматическое порождение гипотез Работы в области приобретения знаний интеллектуальными системами были и остаются важнейшим направлением теории и практики искусственного интеллекта. Целью этих работ является создание методологий, технологий и программных средств переноса знаний (или, как иногда говорят, компетентности), в базу знаний системы. При этом в качестве источников знаний выступают эксперты (т.е. высококвалифицированные специалисты предметных областей), тексты и данные, например, хранимые в базах данных. Соответственно, развиваются различные методы приобретения знаний Машинному обучению в мире уделяется большое внимание. Существует множество алгоритмов машинного обучения, среди самых распространенных – алгоритмы класса C4. Один из алгоритмов этого класса С4.5, является, по существу, алгоритмом декомпозиции и строит дерево решений. Исходной информацией для построения этого дерева является множество примеров. С каждой вершиной дерева ассоциируется наиболее (на текущем шаге) частотный класс примеров. На следующем шаге этот принцип рекурсивно применяется к текущей вершине, т.е. множество примеров, связанных с текущей вершиной также разбивается на подклассы. Алгоритм завершает свою работу либо при удовлетворении некоторого критерия либо при исчерпании подклассов (если они заданы). Активно исследуются методы обучения причинам действий. Иногда говорят о так называемой теории действий, имея в виду ситуационное исчисление в духе Джона МакКарти. В этой теории причины действий и сами действия описываются в виде клаузальных структур (один из видов таких структур представляет собой импликацию, левая часть которой есть конъюнкция атомарных формул, а правая состоит из одной атомарной формулы). Далее, методы индуктивного логического программирования модифицируются таким образом, чтобы быть применимыми к поиску таких структур. Когда такие структуры найдены, их можно использовать в языках логического программирования для рассуждений о действиях и их причинах. Многие работы этого направления посвящены "нейронной парадигме". Нейросетевой подход используется в огромном количестве задач - для кластеризации информации из Интернета, автоматической генерации локальных каталогов, представления образов (в рекурсивных нейронных сетях). Среди активно изучаемых в последнее время тем - неоднородные нейронные модели с отношениями сходства. (Heterogeneous Neural Networks with similarity relation). Это отношение сходства определяется на множестве входов и множестве состояний сети, а мерой сходства является скалярное произведение векторов либо эвклидово расстояние (где один вектор-вектор входов, а другой распределение весов нейронов, описывающих текущую ситуацию). Работы по автоматическому порождению гипотез связаны, главным образом, с формализацией правдоподобных рассуждений, поиском зависимостей причинно-следственного типа между некоторыми сущностями. В качестве примеров можно привести порождение гипотез о свойствах химических соединений (прогноз биологических активностей), о возможных причинах дефектов (диагностика) и т.п. 3. Распознавание образов Традиционное направление искусственного интеллекта, берущее начало у самых его истоков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Это направление близко к машинному обучению, тесно связано с нейрокибернетикой. 4. Интеллектуальный анализ данных и обработка образной информации Это сравнительно новое направление, основу которого составляют две процедуры: обнаружение закономерностей в исходной информации и использование обнаруженных закономерностей для предсказания (прогнозирования). Сюда относят задачи выбора информативных данных из большой их совокупности, выбора информативных характеристик некоторого объекта из более широкого множества его характеристик, задачи построения модели, позволяющие вычислять значения выбранных информативных характеристик по значениям других характеристик, и т.п. Значительную часть этого направления составляют исследования по различным аспектам распознавания изображений, в частности, с помощью нейросетей (включая псевдооптические нейросети). Изучаются методы распознавания последовательностей видеообразов на основе декларативного подхода и извлечения семантически значимой информации. К этому же направлению принадлежат исследования по графической технологии программирования в Интернете. 5. Многоагентные системы, динамические интеллектуальные системы и планирование Это новое (впрочем, в теоретических, поведенческих аспектах – скорее хорошо забытое старое) направление, изучающее интеллектуальные программные агенты и их коллективы Интеллектуальный агент это программная система, обладающая -автономностью: агенты действуют без непосредственного участия человека и могут в некоторых пределах сами управлять своими действиями; -социальными чертами: агенты взаимодействуют с другими агентами (и, возможно, человеком) посредством некоторого языка коммуникации; -реактивностью: агенты воспринимают окружающую среду, которая может быть физическим миром, множеством других агентов, сетью Интернет или комбинацией всего этого, и реагируют на ее изменения; -активностью: агенты могут демонстрировать целенаправленное поведение, проявляя при этом инициативу. Основные задачи в этой области таковы: реализация переговоров интеллектуальных агентов и разработка языков для этой цели, координация поведения агентов, разработка архитектуры языка программирования агентов. Следует подчеркнуть, что агентские технологии появились примерно 6-7 лет назад. За это время интерес к этим технологиям переместился из сферы академических исследований в сферу коммерческих и промышленных приложений, а идеи и методы агентских технологий весьма быстро мигрировали из искусственного интеллекта в практику разработки программного обеспечения и другие вычислительные дисциплины. Планирование поведения, или ИИ - планирование – это способность интеллектуальной системы синтезировать последовательность действий для достижения желаемого целевого состояния. Работы по созданию эффективных методов такого синтеза востребованы и активно ведутся уже около 30 лет. Планирование является основой интеллектуального управления, т. е. автоматического управления автономным целенаправленным поведением программно-технических систем. Среди методов ИИ–планирования сегодня выделяют классическое планирование, т.е. планирование в условиях статической среды, динамическое планирование, т.е. планирование в условиях изменения среды и, главное, учета такого изменения, иерархическое планирование, т.е.. когда действия абстрактного плана высокого уровня конкретизируются более детальными планами нижнего уровня , частично - упорядоченное (или монотонное ) планирование, когда план строится на основе частично упорядоченного множества подпланов. При этом , общий план (элементами которого являются подпланы), обязан быть монотонным, а каждый из подпланов может быть немонотонным. Добавлю, что монотонность это такое свойство плана, когда каждое его действие уменьшает различия между текущим состоянием и целью поведения. Например, если план движения робота к цели таков, что каждый его шаг приближает к цели, то план монотонен, но если он наткнулся при этом на препятствие и требуется его обойти, то монотонность плана нарушится. Однако, если план обхода препятствия выделить в отдельный подплан и рассматривать оный как элемент исходного плана, то монотонность последнего восстановится. Активно ведутся работы и в области распознавания планов, построения планировщиков и расширения их возможностей, эвристического планирования с ресурсными ограничениями, управления планированием посредством временной логики, планирования с использованием графов. Рассматриваются подходы к планированию, при которых построение текущих планов выполняется непрерывно для каждого состояния системы в реальном времени. Для этого предусмотрен непрерывный мониторинг объекта управления. Задачи планирования относятся в наше время к наиболее важным и перспективным направлениям в ИИ. Динамические интеллектуальные системы - результат интеграции экспертных систем с системами имитационного моделирования. Это двухкомпонентные динамические модели, где один из компонентов – база знаний, а другой компонент имеет континуальный характер. Разрабатываются методы выбора логик для описания временных зависимостей при построении динамических интеллектуальных систем. Работы в области систем поддержки принятия решенийпосвящены моделированию сложных технологических и технических систем, поиску решений в условиях чрезвычайных ситуаций, задачам проектирования систем управления техническими объектами, использованию вероятностных подходов и сценариев при принятии решений, ряду других проблем. 6. Обработка естественного языка, пользовательский интерфейс и модели пользователя Это направление связано с разработкой систем поддержки речевого общения, c решением проблем уточнения запроса в информационных системах, с задачами сегментации текстов по тематическим топикам, с задачами управления диалогом, с задачами анализа естественного языка с использованием различных эвристик. Сюда же включаются проблемы дискурса (иногда под дискурсом понимают совокупность речевых актов вместе с их результатами). По прежнему актуальны обучения контекстному анализу текста, задачи приобретения знаний интеллектуальными системами и извлечения информации из текстов. Важнейшей задачей в процессе извлечения информации, как, впрочем, и в процессе приобретения знаний, является минимизация роли эксперта – участника процесса. Важность этого направления нельзя недооценивать. Причина тому - возрастание потоков текстовой информации, существующий социальный заказ на поиск релевантной информации в Интернете, на анализ текстовой информации, на извлечение данных из текстов. Таким образом, значение методов автоматического анализа текстов будет в дальнейшем возрастать. Предметом исследований является также динамическое моделирование пользователя, в частности, в системах электронной коммерции, развитие фреймового подхода для представления запросов пользователя, адаптивный интерфейс, мониторинг и анализ покупательского поведения в Интернете. 7. Нечеткие модели и мягкие вычисления Это направление представлено нечеткими схемами «вывода по аналогии», взглядом на теорию нечетких мер с вероятностных позиций, нечетким представлением аналитическими моделями для описания геометрических объектов, алгоритмами эволюционного моделирования с динамическими параметрами, такими как время жизни и размер популяции, методами решения оптимизационных задач с использованием технологий генетического поиска, гомеостатических и синергетических принципов и элементов самоорганизации. 8. Разработка инструментальных средств и специального программного обеспечения Это обширная сфера деятельности внутри ИИ, ставящая перед собой задачи: а) создания программных средств приобретения знаний для автоматизированного переноса компетентности в базы знаний. При этом в качестве источников такой компетентности могут выступать не только «прямые» её носители – эксперты различных областей, но и текстовые материалы – от учебников до протоколов, а также, разумеется, базы данных (имплицитные источники знаний). Вербализация, то есть перевод таких источников в эксплицитную форму составляет содержание методов обнаружения знаний в данных, в том числе различных методов обучения по примерам (включая предобработку больших массивов данных для дальнейшего анализа); б) реализации программных средств поддержки баз знаний. в) реализации программных средств поддержки проектирования интеллектуальных систем. Набор таких средств обычно содержит редактор текстов, редактор понятий, редактор концептуальных моделей, библиотеку моделей, систему приобретения знаний от экспертов, средства обучения по примерам и ряд других модулей. В рамках этого направления разрабатываются специальные языки для решения задач невычислительного плана. Эти языки ориентированы на символьную обработку информации - LISP, PROLOG, SMALLTALK, РЕФАЛ и др. Помимо этого создаются пакеты прикладных программ, ориентированные на промышленную разработку интеллектуальных систем, или программные инструментарии искусственного интеллекта, например KEE, ARTS. Достаточно популярно создание так называемых пустых экспертных систем, или "оболочек", - EXSYS, Ml, G2 и др., в которых можно наполнять базы знаний, создавая различные системы.
|