Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Класифікація


Дата добавления: 2014-12-06; просмотров: 550



В производных классах могут быть определены свои поля, методы, свойства и вложенные типы. При создании объектов производных классов они будут доступны наравне с полями, методами, свойствами и вложенными типами базовых классов (в рамках, определенных модификаторами видимости).

Иногда может возникнуть необходимость в производном классе переопределить поле, свойство, метод (это не касается перегруженных методов) или вложенный тип из базового класса. В этом случае в производном класса объявление компонента осуществляется с помощью модификатора new, что указывает на то, что данный компонент перекрывает соответствующий компонент из базового класса.

public class OldClass

{

public void Func()

{

}

}

 

public class NewClass : OldClass

{

new public void Func()

{

}

}

Следует отметить, что использование модификатора new, по крайней мере, в данной версии C# носит скорее рекомендательный характер и облегчает чтение кода программы. Если не поставить new там, где это надо или наоборот поставить там, где не надо, то компилятор выдаст предупреждение и продолжит компиляцию. Более того использование этого модификатора актуально только в тех случаях, если компонент и в базовом классе и в производном является открытым. В следующем пример нет необходимости

public class OldClass

{

private int data = 12;

}

 

public class NewClass : OldClass

{

public int data = 14;

}

В примере нет необходимости использовать new, так как обращение это явно обращение к полю производного класса.

NewClass nc = new NewClass();

nc.data = 15;

Из методов производного класса есть возможность обратится к компонентам базового с помощью ключевого слова base. Его использование аналогично использованию ключевого слова this.

public class OldClass

{

public void F()

{

}

}

 

public class NewClass : OldClass

{

new public void F()

{

base.F();

}

}

NewClass nc = new NewClass();

nc.F();

 

Без указания base вызов функции F() привел бы к возникновению исключения StackOverflowException, так как образовалась бы бесконечная рекурсия.

Лекция №5 Технология Объектно-ориентированного программирования.

Особенности объектно-ориентированное программирование. Приемы объектно-ориентированного программирования. Инкапсуляция, наследование единичное и множественное, полиморфизм. Статическое и динамическое связывание. Примеры создания приложений наследуемыми классами.

ИСТОРИЯ СОЗДАНИЯ ОБЪЕКТНО-ОРИЕНТИРОВАННОГО ПРОГРАММИРОВАНИЯ

Практически сразу после появления языков третьего поколения (1967) ведущие специалисты в области программирования выдвинули идею преобразования постулата фон Неймана: «данные и программы неразличимы в памяти машины». Их цель заключалась в максимальном сближении данных и кода программы. Решая поставленную задачу, они столкнулись с задачей, решить которую без декомпозиции оказалось невозможно, а традиционные структурные декомпозиции не сильно упрощали задачу. Усилия многих программистов и системных аналитиков, направленные на формализацию подхода, увенчались успехом. Были разработаны три основополагающих принципа того, что потом стало называться объектно-ориентированным программированием (ООПр):

наследование; инкапсуляция; полиморфизм.

Результатом их первого применения стал язык Симула-1 (Simula-1), в котором был введен новый тип — объект. В описании этого типа одновременно указывались данные (поля) и процедуры, их обрабатывающие — методы. Родственные объекты объединялись в классы, описания которых оформлялись в виде блоков программы. При этом класс можно использовать в качестве префикса к другим классам, которые становятся в этом случае подклассами первого. Впоследствии Симула-1 был обобщен, и появился первый

универсальный ООПр — объектно-ориентированный язык программирования — Симула-67 (67 — по году создания). Как выяснилось, ООПр оказались пригодными не только для моделирования (Simula) и разработки графических приложений- (SmallTalk), но и для создания большинства других приложений, а их приближенность к человеческому мышлению и возможность многократного использования кода сделали их наиболее используемыми в программировании.

Объектно-ориентированный подход помогает справиться с такими сложными проблемами, как уменьшение сложности программного обеспечения; повышение надежности программного обеспечения; обеспечение возможности модификации отдельных компонентов программного обеспечения без изменения остальных его компонентов; обеспечение возможности повторного использования отдельных компонентов программного обеспечения.

В основу структурного мышления положены структуризация и декомпозиция окружающего мира. Задача любой сложности разбивается на подзадачи, а те в свою очередь разбиваются далее и т. д., пока каждая подзадача не станет простой, соответствующей модулю. Модуль в понятии структурного программирования — это подпрограмма (функция или процедура), оформленная определенным образом и выполняющая строго одно действие. Методы структурного проектирования используют модули в качестве строительных блоков программы, а структура программы представляется иерархией подчиненности модулей.

Модуль ООПр — файл описаний объектов и действий над ними. Методы объектно-ориентированного проектирования используют в качестве строительных блоков объекты. Каждая структурная составляющая является самостоятельным объектом, содержащим свои собственные коды и данные. Благодаря этому уменьшена или отсутствует область глобальных данных. Объектно-ориентированное мышление адекватно способу естественного человеческого мышления, ибо человек мыслит «образами» и «абстракциями». Чтобы проиллюстрировать некоторые из принципов объектно-ориентированного мышления, обратимся к следующему примеру, основанному на аналогии мира объектов реальному миру. Рассмотрим ситуацию из обыденной жизни. Допустим, вы решили поехать в другой город на поезде. Для этого вы приходите на ближайшую железнодорожную станцию и сообщаете кассиру номер нужного поезда и дату, когда планируете уехать. Теперь можете быть уверены, что ваш запрос будет удовлетворен (при условии, что вы покупаете билет заранее).

Таким образом, для решения своей проблемы вы нашли объект «кассир железнодорожной кассы» и передали ему сообщение, содержащее запрос. Обязанностью объекта «кассир железнодорожной кассы» является удовлетворение запроса. У кассира имеется некоторый определенный метод, или эвро-ритм, или последовательность операций (процедура), которые используют работники кассы для выполнения вашего запроса. Имеются у кассира и другие методы, например по сдаче денег, — инкассации. Вам совершенно не обязательно знать не только детально метод, который используется кассиром, но даже весь набор методов работы кассира. Однако если бы вас заинтересовал вопрос как работает кассир, то обнаружили бы, что кассир пошлет свое сообщение автоматизированной системе железнодорожного вокзала. Та, в свою очередь, примет необходимые меры и т. д. Тем самым ваш запрос, в конечном счете, будет удовлетворен через последовательность запросов, пересылаемых от одного объекта к другому. Таким образом, действие в объектно-ориентированном программировании инициируется посредством передачи сообщений объекту, ответственному за действие. Сообщение содержит запрос на осуществление действия конкретным объектом и сопровождается дополнительными аргументами, необходимыми для его выполнения. Пример аргументов вашего сообщения: дата отъезда, номер поезда, тип вагона. Сообщения кассира: дайте паспорт, заплатите такую-то сумму, получите билет и сдачу. Кассир, находящийся на рабочем месте, не обязан отвлекаться от работы для пустой болтовни с покупателем билета, например, сообщать ему свой домашний телефон или сумму денег, находящуюся в сейфе кассы. Таким образом, кассир взаимодействует с другими объектами («покупатель билета», «автоматизированная система», «инкассатор», «бригадир» и т. д.) только по строго регламентированному интерфейсу. Интерфейс — это набор форматов допустимых сообщений. Для исключения возможных, но недопустимых сообщений используется механизм сокрытия информации (инструкция, запрещающая кассиру болтать впустую на рабочем месте).

Помимо методов, кассир для успешной работы должен располагать наборами чистых бланков билетов, купюрами и монетами наличных денег (хотя бы для сдачи покупателю). Такие наборы хранятся в особых отсеках кассы, особых коробках. Места хранения этих наборов называют полями объектов. В программах полям объектов соответствуют переменные, которые могут хранить какие-то значения. Покупатель билета не может положить деньги непосредственно в отсек кассового аппарата или сейф кассира, а также самостоятельно отсчитать себе сдачу. Таким образом, кассир как бы заключен в оболочку, или капсулу, которая отделяет его и покупателя от лишних взаимодействий. Помещение кассы (капсула) имеет особое устройство, исключающее доступ покупателей билетов к деньгам. Это и есть инкапсуляция объектов, позволяющая использовать только допустимый интерфейс — обмен информацией и предметами только посредством допустимых сообщений, а может быть, еще и подаваемых в нужной последовательности. Именно только через вызов сообщениями особых методов осуществляется обмен данных, отделяя покупателей от полей. Благодаря инкапсуляции покупатель может лишь отдавать в качестве оплаты деньги за билет в форме сообщения с аргументом «сумма». Аналогично, но в обратном направлении кассир возвращает сдачу. Вы можете передать свое сообщение, например, объекту «свой приятель», и он его, скорее всего, поймет, и как результат — действие будет выполнено (а именно билеты будут куплены). Но если вы попросите о том же объект «продавец магазина», у него может не оказаться подходящего метода для решения поставленной задачи. Если предположить, что объект «продавец магазина» вообще воспримет этот запрос, то он «выдаст» надлежащее сообщение об ошибке. В отличие от программ, люди работают не по алгоритмам, а по эвроритмам. Человек может самостоятельно менять правила методов своей работы. Так, продавец магазина при виде аргумента «очень большая сумма», может закрыть магазин и побежать покупать железнодорожный билет. Напомним, что такие ситуации для программ пока еще невозможны. Различие между вызовом процедуры и пересылкой сообщения состоит в том, что в последнем случае существует определенный получатель и интерпретация (т. е. выбор подходящего метода, запускаемого в ответ на сообщение), которая может быть различной для разных получателей. Обычно конкретный объект-получатель неизвестен вплоть до выполнения программы, так что определить, какой метод, какого объекта будет вызван, заранее невозможно (конкретный кассир заранее не знает, кто и когда из конкретных покупателей обратится к нему). В таком случае говорят, что имеет место позднее связывание между сообщением (именем процедуры или функции) и фрагментом кода (методом), исполняемым в ответ на сообщение. Эта ситуация противопоставляется раннему связыванию (на этапе компилирования или компоновки программы) имени с фрагментом кода, что происходит при традиционных вызовах процедур.

Фундаментальной концепцией в объектно-ориентированном программировании является понятие классов. Все объекты являются представителями, или экземплярами, классов. Например: у вас наверняка есть примерное представление о реакции кассира на запрос о заказе билетов, поскольку вы имеете общую информацию о людях данной профессии (например, кассире кинотеатра) и ожидаете, что он, будучи представителем данной категории, в общих чертах будет соответствовать шаблону. То же самое можно сказать и о представителях других профессий, что позволяет разделить человеческое общество на определенные категории по профессиональному признаку (на классы). Каждая категория в свою очередь делится на представителей этой категории. Таким образом, человеческое общество представляется в виде иерархической структуры с наследованием свойств классов объектов всех категорий. В корне такой классификации может находиться класс «HomoSapience» или даже класс «млекопитающие» Метод, активизируемый объектом в ответ на сообщение, определяется классом, к которому принадлежит получатель сообщения. Все объекты одного класса используют одни и те же методы в ответ на одинаковые сообщения. Классы могут быть организованы в иерархическую структуру с наследованием свойств. Класс-потомок наследует атрибуты родительского класса, расположенного ниже в иерархическом дереве (если дерево иерархии наследования растет вверх). Абстрактный родительский класс — это класс, не имеющий экземпляров объектов. Он используется только для порождения потомков. Класс «HomoSapience», скорее всего, будет абстрактным, поскольку для практического применения, например работодателю, экземпляры его объектов не интересны. Итак, пусть абстрактным родительским классом у работодателя будет класс «трудоспособный человек», который включает методы доступа к внутренним данным, а также поля самих внутренних данных: фамилия; имя; отчество; дата рождения; домашний адрес; домашний телефон; сведения об образовании; сведения о трудовом стаже и т. д. От данного класса могут быть унаследованы классы: «кассир», «водитель автомобиля», «музыкант». Класс «кассир» располагает методами работы: общение с клиентом по правилам, получение денег, выдача денег, общение с инкассатором и т. д. От класса «кассир» могут быть унаследованы классы: «кассир, выдающий зарплату», «кассир железнодорожной кассы». Кассир железнодорожной кассы отличается от кассира, выдающего зарплату, дополнительными знаниями и навыками работы. От класса «кассир железнодорожной кассы» могут быть получены экземпляры объектов: «кассир кассы №1», «кассир кассы № 2», «кассир кассы № 3» и т. д.

В помещении большого вокзала можно обнаружить множество одинаково оборудованных объектов — касс. Однако среди касс можно выделить различающиеся кассы: суточные, предварительные, воинские, работающие по бронированию билетов и т. д. Для того чтобы начальнику вокзала поменять один вид кассы на другой, нет необходимости перестраивать помещение кассы и менять оборудование. Ему достаточно заменить в кассе кассира с одними навыками на кассира с другими навыками. Кассир вставляет табличку с новой надписью вида кассы — и все. Заметим, что смена функции касс произошла без остановки работы вокзала. Такая замена становится простой именно потому, что все помещения касс имеют одинаковый интерфейс с кассирами и клиентами. Теперь разные объекты, поддерживающие одинаковые интерфейсы, могут выполнять в ответ на запросы разные операции.

Ассоциация запроса с объектом и одной из его операций во время выполнения называется динамическим связыванием Динамическое связывание позволяет во время выполнения подставить вместо одного объекта другой, если он имеет точно такой же интерфейс. Такая взаимозаменяемость называется полиморфизмом и является еще одной фундаментальной особенностью объектно-ориентированных систем Пусть, согласно произведенной классификации, объекты «скрипач с фамилией Петров» и «водитель автомобиля Сидоров» будут экземплярами разных классов. Для того чтобы получить объект «Иванов, являющийся одновременно скрипачом и водителем», необходим особый класс, который может быть получен из классов «скрипач» и «водитель автомобиля» множественным наследованием Теперь работодатель, послав особое сообщение делегирования, может поручить (делегировать) объекту «Иванов» выполнять функцию либо водителя, либо скрипача. Объект «Иванов», находящийся за рулем автомобиля, не должен начать играть на скрипке. Для этого должен быть реализован механизм самоделегирования полномочий — объект «Иванов», находясь за рулем, запрещает сам себе игру на скрипке. Таким образом, понятие обязанности или ответственности за выполнение действия является фундаментальным в объектно-ориентированном программировании.

В системах программирования с отсутствующим множественным наследованием задачи, требующие множественного наследования, всегда могут быть решены композицией (агрегированием) с последующим делегированием полномочий. Композиция объектов — это реализация составного объекта, состоящего из нескольких совместно работающих объектов и образующих единое целое с новой, более сложной функциональностью. Агрегированный объект — объект, составленный из подобъектов. Подобъекты называются частями агрегата, и агрегат отвечает за них. Например, в системах с множественным наследованием шахматная фигура ферзь может быть унаследована от слона и ладьи. В системах с отсутствующим множественным наследованием можно получить ферзя двумя способами. Согласно первому способу, можно создать класс «любаяфигура» и далее, в периоде выполнения, делегировать полномочия каждому объекту-экземпляру данного класса быть ладьей, слоном, ферзей, пешкой и т. д. По второму способу после получения классов «ладья» и «слон» их можно объединить композицией в класс «ферзь». Теперь объект класса «ферзь» можно использовать как объект «ферзь» или даже как объект «слон», для чего объекту «ферзь» делегируется выполнение полномочий слона. Более того, можно делегировать объекту «ферзь» полномочия стать объектами «король» или даже «пешка»! Для композиции требуется, чтобы объединяемые объекты имели четко определенные интерфейсы. И у наследования, и у композиции есть достоинства и недостатки. Наследование класса определяется статически на этапе компиляции; его проще использовать, поскольку оно напрямую поддержано языком программирования. Но у наследования класса есть и минусы. Во-первых, нельзя изменить унаследованную от родителя реализацию во время выполнения программы, поскольку само наследование фиксировано на этапе компиляции. Во-вторых, родительский класс нередко, хотя бы частично, определяет физическое представление своих подклассов. Поскольку подклассу доступны детали реализации родительского класса, то часто говорят, что наследование нарушает инкапсуляцию. Реализации подкласса и родительского класса настолько тесно связаны, что любые изменения последней требуют изменять и реализацию подкласса.

Композиция объектов определяется динамически во время выполнения за счет того, что объекты получают ссылки на другие объекты. Композицию можно применить, если объекты соблюдают интерфейсы друг друга. Для этого, в свою очередь, требуется тщательно проектировать интерфейсы, так чтобы один объект можно было использовать вместе с широким спектром других. Но и выигрыш велик, поскольку доступ к объектам осуществляется только через их интерфейсы, мы не нарушаем инкапсуляцию. Во время выполнения программы любой объект можно заменить другим, лишь бы он имел тот же тип. Более того, поскольку при реализации объекта кодируются прежде всего его интерфейсы, то зависимость от реализации резко снижается.

Композиция объектов влияет на дизайн системы и еще в одном аспекте. Отдавая предпочтение композиции объектов, а не наследованию классов, вы инкапсулируете каждый класс и даете ему возможность выполнять только свою задачу. Классы и их иерархии остаются небольшими, и вероятность их разрастания до неуправляемых размеров невелика. С другой стороны, дизайн, основанный на композиции, будет содержать больше объектов (хотя число классов, возможно, уменьшится), и поведение системы начнет зависеть от их взаимодействия, тогда как при другом подходе оно было бы определено в одном классе. Это подводит еще к одному правилу объектно-ориентированного проектирования: предпочитайте композицию наследованию класса. В идеале, чтобы добиться повторного использования кода, вообще не следовало бы создавать новые компоненты. Хорошо бы, чтобы можно было получить всю нужную функциональность, просто собирая вместе уже существующие компоненты. На практике, однако, так получается редко, поскольку набор имеющихся компонентов все же недостаточно широк. Повторное использование за счет наследования упрощает создание новых компонентов, которые можно было бы применять со старыми. Поэтому наследование и композиция часто используются вместе. Тем не менее опыт показывает, что проектировщики злоупотребляют наследованием. Нередко программы могли бы стать проще, если бы их авторы больше полагались на композицию объектов. С помощью делегирования композицию можно сделать столь же мощным инструментом повторного использования, сколь и наследование. При делегировании в процесс обработки запроса вовлечено два объекта: получатель поручает выполнение операций другому объекту — уполномоченному. Примерно так же подкласс делегирует ответственность своему родительскому классу. Но унаследованная операция всегда может обратиться к объекту-получателю через переменную-член (в C++). Чтобы достичь того же эффекта для делегирования, получатель передает указатель на самого себя соответствующему объекту, чтобы при выполнении делегированной операции последний мог обратиться к непосредственному адресату запроса. Например, вместо того чтобы делать класс Window (окно) подклассом класса Rectangle (прямоугольник) — ведь окно является прямоугольником, — мы можем воспользоваться внутри Window поведением класса Rectangle, поместив в класс Window переменную экземпляра типа Rectangle и делегируя ей операции, специфичные для прямоугольников. Другими словами, окно не является прямоугольником, а содержит его. Теперь класс Window может явно перенаправлять запросы своему члену Rectangle, а не наследовать его операции. Главное достоинство делегирования в том, что оно упрощает композицию поведения во время выполнения. При этом способ комбинирования поведения можно изменять. Внутреннюю область окна разрешается сделать круговой во время выполнения простой подставкой вместо экземпляра класса Rectangle экземпляра класса Circle. Предполагается, конечно, что оба эти класса имеют одинаковый тип.

У делегирования есть и недостаток, свойственный и другим подходам, применяемым для повышения гибкости за счет композиции объектов. Заключается он в том, что динамическую, в высокой степени параметризованную программу труднее понять, чем статическую. Есть, конечно, и некоторая потеря машинной производительности, но неэффективность работы проектировщика гораздо более существенна. Делегирование можно считать хорошим выбором только тогда, когда оно позволяет достичь упрощения, а не усложнения. Нелегко сформулировать правила, ясно говорящие, когда следует пользоваться делегированием, поскольку эффективность его зависит от контекста и личного опыта программиста.

Таким образом, можно выделить следующие фундаментальные характеристики объектно-ориентированного мышления:

1. Любой предмет или явление могут рассматриваться как объект.

2. Объект может размещать в своей памяти (в полях) личную информацию, независимую от других объектов. Рекомендуется использовать инкапсулированный (через особые методы) доступ к информации полей.

3. Объекты могут иметь открытые по интерфейсу методы обработки сообщений. Сами сообщения вызовов методов посылаются другими объектами, но для осуществления разумного интерфейса между объектами некоторые методы могут быть скрыты.

4. Вычисления осуществляются путем взаимодействия (обмена данными) между объектами, при котором один объект требует, чтобы другой объект выполнил некоторое действие (метод). Объекты взаимодействуют, посылая и получая сообщения.

Сообщение — это запрос на выполнение действия, дополненный набором аргументов, которые могут понадобиться при выполнении действия. Объект — получатель сообщения — обрабатывает сообщения своими внутренними методами.

5. Каждый объект является представителем класса, который выражает общие свойства объектов данного класса в виде одинаковых списков набора данных (полей) в своей памяти и внутренних методов, обрабатывающих сообщения. В классе методы задают поведение объекта. Тем самым все объекты, которые являются экземплярами одного класса, могут выполнять одни и те же действия.

6. Классы организованы в единую квазидревовидную структуру с общим корнем, которая называется иерархией наследования. Обычно корень иерархии направлен вверх. При множественном наследовании ветви могут срастаться, образуя сеть наследования. Память и поведение, связанные с экземплярами определенного класса, автоматически являются доступными любому классу, расположенному ниже в иерархическом дереве.

7. Благодаря полиморфизму — способности подставлять во время выполнения вместо одного объекта другой, с совместимым интерфейсом, в периоде выполнения одни и те же объекты могут разными методами исполнять одни и те же запросы сообщений.

8. Композиция является предпочтительной альтернативой множественному наследованию и позволяет изменять состав объектов агрегата в процессе выполнения программы.

9. Структура объектно-ориентированной программы на этапе выполнения часто имеет мало общего со структурой ее исходного кода. Последняя фиксируется на этапе компиляции. Ее код состоит из классов, отношения наследования между которыми неизменны. На этапе же выполнения структура программы — быстро изменяющаяся сеть из взаимодействующих объектов. Две эти структуры почти независимы.

С чего же начинается создание объектно-ориентированной программы?

Конечно, с объектно-ориентированного анализа (ООА—object- oriented analysis), который направлен на создание моделей реальной действительности на основе объектно-ориентированного мировоззрения. Объектно-ориентированный анализ (ООА) — это методология, при которой требования к системе воспринимаются с точки зрения классов и объектов, прагматически выявленных впредметной области.

На результатах QOA формируются модели, на которых основывается объектно-ориентированное проектирование (object-oriented design, OOD). Объектно-ориентированное проектирование (ООП) — это методология проектирования, соединяющая в себе процесс объектной декомпозиции и приемы представления логической и физической, а также статической и динамической моделей проектируемой системы. Что же такое объектно-ориентированное программирование (ООПр) (object-oriented programming)? Программирование прежде всего подразумевает правильное и эффективное использование механизмов конкретных языков программирования.

Объектно-ориентированное программирование — это процесс реализации программ, основанный на представлении программы в виде совокупности объектов. ООПр предполагает, что любая функция (процедура) в программе представляет собой метод объекта некоторого класса, причем класс должен формироваться в программе естественным образом, как только в программе возникает необходимость описания новых физических предметов или их абстрактных понятий (объектов программирования). Каждый новый шаг в разработке алгоритма также должен представлять собой разработку нового класса на основе уже существующих классов, т. е. технология ООПр иначе может быть названа как программирование «от класса к классу».

Можно ли реализовать объектно-ориентированную программу не на объектно-ориентированных языках? Ответ, скорее всего, положителен, хотя придется преодолеть ряд трудностей. Ведь главное, что требуется, — это реализовать объектную модель. Сокрытие информации при использовании обычных языков, в принципе, можно реализовать сокрытием доступности вызовов подпрограмм в файлах (Unit). Инкапсуляцию объектов можно достичь как и в объектно-ориентированных языках написанием отдельных подпрограмм. Далее можно считать, что каждый объект порождается от своего уникального класса. Конечно, иерархии классов в таком проекте не будет и для достижения параллелизма придется писать код для организации вызова к исполнению как бы сразу нескольких копий процедур, но программа при этом будет вполне объектно-ориентированной.

ОСНОВНЫЕ ПОНЯТИЯ, ИСПОЛЬЗУЕМЫЕ В ОБЪЕКТНО-ОРИЕНТИРОВАННЫХ ЯЗЫКАХ

Класс в одном из значений этого термина обозначает тип структурированных данных.Объект — это структурированная переменная типа класс. Каждый объект является представителем (экземпляром) определенного класса. В программе может быть несколько объектов, являющихся экземплярами одного и того же класса. Все объекты — экземпляры данного класса — аналогичны друг другу, поскольку имеют одинаковый интерфейс, один и тот же набор операций (методов) и полей, определяемых в их классе. Интерфейс класса иногда называют особенностями класса. Класс является описанием того, как будет выглядеть и вести себя его представитель. Обычно проектируют класс как образование (матрицу), отвечающее за создание своих новых представителей (экземпляров или объектов). Экземпляр объекта создается при помощи особого метода класса, называемого конструктором, так как необходимо создать экземпляр, прежде чем он станет активным и начнет взаимодействовать с окружающим миром. Уничтожение экземпляров поддерживает сам активный экземпляр, имеющий соответствующий метод — деструктор.

Объект — это структурированная переменная типа класс, содержащая всю информацию о некотором физическом предмете или реализуемом в программе понятии. Объект — это логическая единица, которая содержит данные и правила (методы с кодом алгоритма) Другими словами, объект — это расположенные в отдельном участке памяти:

— порция данных объекта или атрибуты исходных данных, называемые еще полями, членами данных {data members), значения которых определяют текущее состояние объекта;

— методы объекта {methods, в разных языках программирования еще называют подпрограммами, действиями, member functions или функциями-членами), реализующие действия (выполнение алгоритмов) в ответ на их вызов в виде переданного сообщения;

— часть методов, называемых свойствами (property), которые, в свою очередь, определяют поведение объекта, т. е. его реакцию на внешние воздействия (в ряде языков программирования свойства оформляются особыми операторами).

Объекты в программах воспроизводят все оттенки явлений реального мира: «рождаются» и «умирают»; меняют свое состояние; запускают и останавливают процессы; «убивают» и «возрождают» другие объекты.

Объявления классов определяют уже описанные три характеристики объектов: поля объекта, методы объекта, свойства объектов. Также в объявлениях может указываться предок данного класса. В соответствии с описанием класса внутри объекта данные и методы могут быть как открытыми по интерфейсу public, так и сокрытыми private. Во время выполнения программы объекты взаимодействуют друг с другом посредством вызова методов вызываемого объекта—в этом и заключается передача сообщений. Для того чтобы объект послал сообщение другому объекту, в большинстве языков программирования требуется после указания имени вызываемого объекта записать вызов подпрограммы (метода) с соответствующим именем и указанием необходимых фактических параметров (аргументов). Получив сообщение, объект-получатель начинает выполнять код вызванной подпрограммы (метода) с полученными значениями аргументов. Таким образом, функционирование программы (выполнение всего алгоритма программы) осуществляется последовательным вызовом методов от одного объекта к другому. Хотя можно получить прямой доступ к полям объекта, использование такого подхода не поощряется. Одно из больших преимуществ ООПр — это инкапсуляция, предназначенная для разрешения работы с данными в полях объектов только через сообщения. Для реализации методов обработки таких сообщений используются свойства. Свойства — это особым образом оформленные методы, предназначенные как для чтения и контролируемого изменения внутренних данных объекта (полей), так и выполнения действий, связанных с поведением объекта. Так, например, если в заданном месте экрана уже отображена какая-то строка и мы хотим изменить положение строки на экране, то мы посылаем объекту новое значение свойства в виде набора нужных координат. Далее свойство автоматически трансформируется в вызов метода, который изменит значение поля координат отображения строки и выполнит действия по уничтожению изображения строки на прежнем месте экрана, а также по отображению строки в новом месте экрана.

Можно выделить несколько преимуществ инкапсуляции. Преимущество 1. Надежность данных. Можно предотвратить изменение элемента данных, выполнив в свойстве (методе) дополнительную проверку значения на допустимость. Тем самым можно гарантировать надежное состояние объекта.

Преимущество 2. Целостность ссылок. Перед доступом к объекту, связанному с данным объектом, можно удостовериться, что косвенное поле содержит корректное значение (ссылку на экземпляр).

Преимущество 3. Предусмотренные побочные эффекты. Можно гарантировать, что каждый раз, когда выполняется обращение к полю объекта, синхронно с ним выполняется какое-либо специальное действие.

Преимущество 4. Сокрытие информации. Когда доступ к данным осуществляется только через методы, можно скрыть детали реализации объекта. Позднее, если реализация изменится, придется изменить лишь реализацию методов доступа к полям. Те же части программы, которые использовали этот класс, не будут затронуты. Весьма удобно рассматривать объекты как попытку создания активных данных. Смысл, вкладываемый в слова «объект представляет собой активные данные», основан на объектно-ориентированной парадигме выполнения операций, состоящей в посылке сообщений. В посылаемых объекту сообщениях указывается, что мы хотим, что бы он выполнил. Так, например, если мы хотим вывести на экране строку, то мы посылаем объекту строки сообщение, чтобы он изобразил себя. В этом случае строка — это уже не пассивный кусок текста, а активная единица, знающая, как правильно производить над собой различные действия.

Одна из фундаментальных концепций ООП — это понятие наследования классов, устанавливающее между двумя классами отношения «родитель-потомок». Наследование — отношение самого высокого уровня и играет важную роль на стадии проектирования. Наследование — это определение класса и затем использование его для построения иерархии производных классов, причем каждый класс-потомок наследует от класса-предка интерфейс всех классов-предков в виде доступа к коду их методов и данным. При этом, возможно, переопределение или добавление как новых данных, так и методов. Класс-предок — это класс, предоставляющий свои возможности и характеристики другим классам через механизм наследования.

Класс, который использует характеристики другого класса посредством наследования, называется его классом-потомком. Итак, наследование проявляется в том, что любой класс-потомок имеет доступ или, другими словами, наследует практически все ресурсы (методы, поля и свойства) родительского класса и всех предков до самого верхнего уровня иерархии. Рассмотрим, как информация, содержащаяся в классе-потомке, может переопределять информацию, наследуемую от предков.

Очень часто при реализации такого подхода метод, соответствующий подклассу, имеет то же имя, что и соответствующий метод в родительском классе. При этом для поиска метода, подходящего для обработки сообщения, используется следующее правило.

Поиск метода, который вызывается в ответ на определенное сообщение, начинается с методов, принадлежащих классу получателя. Если подходящий метод не найден, то поиск продолжается до родительского класса. Поиск продвигается вверх по цепочке родительских классов до тех пор, пока не будет найден нужный метод или пока не будет исчерпана последовательность родительских классов.

В первом случае выполняется найденный метод, во втором выдается сообщение об ошибке. Во многих языках программирования уже на этапе компилирования, а не при выполнении программы определяется, что подходящего метода нет вообще и выдается сообщение об ошибке. Семантически наследование описывает отношение типа «is-a». Например, медведь есть млекопитающее, дом есть недвижимость и «быстрая сортировка» есть сортирующий алгоритм. Таким образом, наследование порождает иерархию «обобщение — специализация», в которой подкласс представляет собой специализированный частный случай своего суперкласса. «Лакмусовая бумажка» наследования — обратная проверка: так, если В не есть А, то В не стоит производить от А. Повторное использование — это использование в программе класса для создания экземпляров или в качестве базового для создания нового класса, наследующего часть или все характеристики родителя. Порождая классы от базовых, вы эффективно повторно используете код базового класса для собственных нужд. Повторное использование сокращает объем кода, который необходимо написать и оттестировать при реализации программы, что сокращает объемы труда. Таким образом, наследование выполняет в ООП несколько важных функций:

Смоделирует концептуальную структуру предметной области;

Сэкономит описания, позволяя использовать их многократно для задания разных классов;

С обеспечивает пошаговое программирование больших систем путем многократной конкретизации классов. Ряд языков, , поддерживает модель наследования, известную как простое наследование и которая ограничивает число родителей конкретного класса одним. Другими словами, определенный пользователем класс имеет только одного родителя. Схема иерархии классов в этом случае представляет собой ряд одиночно стоящих деревьев (hierarchical classification).

Более мощная модель сложного наследования, называемая множественным наследованием, в которой каждый класс может, в принципе, порождаться сразу от нескольких родительских классов, наследуя поведение всех своих предков. Множественное наследование не поддерживается в Delphi, но поддерживается в Visual C++ и ряде других языков. При множественном наследовании составляется уже не схема иерархии, а сеть, которая может включать деревья со сросшимися кронами.

Обычно если объекты соответствуют конкретным сущностям реального мира, то классы являются абстракциями, выступающими в роли понятий. Между классами, как между понятиями, существует иерархическое отношение конкретизации, связывающее класс с классом-потомком. Это отношение реализуется в системах ООП механизмом наследования. Наследование — это способность одного класса использовать характеристики другого. Наследование позволяет практически без ограничений последовательно строить и расширять классы, созданные вами или кем-то еще. Начиная с самых простых классов можно создавать производные классы по возрастающей сложности, которые не только легки при отладке, но и просты по внутренней структуре. Множественное наследование многие аналитики считают «вредным» механизмом, приводящим к сложно разрешимым проблемам проектирования и реализации. В языках с отсутствующим множественным наследованием целей множественного наследования достигают агрегированием объектов с дополнительным делегированием полномочий.

На агрегировании основана работа таких систем визуального программирования, как Delphi, C++. В этих системах имеется порождающий объект пользователя класс-форма (пустое окно Windows). Системы обеспечивают подключение к форме через указатели нужных пользователю объектов, например кнопок, окон редакторов и т. д. При перерисовке формы на экране монитора как бы одновременно с ней перерисовываются изображения агрегированных объектов. Более того, при активизации формы агрегированные

объекты также становятся активными: кнопки начинают нажиматься, а в окна редакторов можно начинать вводить информацию. Одним из базовых понятий технологии ООП является полиморфизм. Термин «полиморфизм» имеет греческое происхождение и означает приблизительно «много форм» (poly — много, morphos — форма).

Полиморфизм — это средство для придания различных значений одному и тому же событию в зависимости от типа обрабатываемых данных, т. е. полиморфизм определяет различные формы реализации одноименного действия Целью полиморфизма применительно к объектно-ориентированному программированию является использование одного имени для задания общих для класса действий, причем каждый объект имеет возможность по-своему реализовать это действие своим собственным, подходящим для него кодом. Полиморфизм является предпосылкой для расширяемости объектно-ориентированных программ, поскольку он предоставляет способ старым программам воспринимать новые типы данных, которые не были определены во время написания программы.

Противоположность полиморфизму называется мономорфизмом; он характерен для языков с сильной типизацией и статическим связыванием (Ada). В более общей трактовке полиморфизм — это способность объектов, принадлежащих к разным типам, демонстрировать одинаковое поведение; способность объектов, принадлежащих к одному типу, демонстрировать разное поведение.

Рассмотрим «вырожденный пример» полиморфизма. В MS DOS есть понятие «номер прерывания», за которым скрывается адрес в памяти. Поместите в ту же ячейку другой адрес — и программы начнут вызывать процедуру с другим «именем» и из другого модуля. Как видно из примера, принцип полиморфизма можно реализовать и не в объектно-ориентированных программах. Ряд авторов книг по теории объектно-ориентированного проектирования соотносят термин «полиморфизм» с разными понятиями, например понятием перегрузки; для обозначения одного-двух или большего количества механизмов полиморфизма; чистого полиморфизма.

Перегрузка функций. Одним из применений полиморфизма в C++ является перегрузка функций. Она дает одному и тому же имени функции различные значения. Например, выражение а + b имеет различные значения, в зависимости от типов переменных а и b (допустим, если это числа, то «+» означает сложение, а если строки, — то склейку этих строк или вообще сложение комплексных чисел, если а и b комплексного типа). Перегрузка оператора «+» для типов, определяемых пользователем, позволяет использовать их в большинстве случаев так же, как и встроенные типы. Двум или более функциям (операция — это тоже функция) может быть дано одно и то же имя. Но при этом функции должны отличаться сигнатурой (либо типами параметров, либо их числом).

Полиморфный метод в C++ называется виртуальной функцией, позволяющей получать ответы на сообщения, адресованные объектам, точный вид которых неизвестен. Такая возможность является результатом позднего связывания. При позднем связывании адреса определяются динамически во время выполнения программы, а не статически во время компиляции как в традиционных компилируемых языках, в которых применяется раннее связывание. Сам процесс связывания заключается в замене виртуальных функций на адреса памяти. Виртуальные методы определяются в родительском классе, а в производных классах происходит их доопределение и для них создаются новые реализации. Основой виртуальных методов и динамического полиморфизма являются указатели на производные классы. При работе с виртуальными методами сообщения передаются как указатели, которые указывают на объект вместо прямой передачи объекту.

Практический смысл полиморфизма заключается в том, что он позволяет посылать общее сообщение о сборе данных любому классу, причем и родительский класс, и классы-потомки ответят на сообщение соответствующим образом, поскольку производные классы содержат дополнительную информацию. Программист может сделать регулярным процесс обработки несовместимых объектов различных типов при наличии у них такого полиморфного метода.

Системные отношения в лексике.


<== предыдущая лекция | следующая лекция ==>
Захворювання новонароджених дітей: хвороби шкіри і пупкової ранки у новонароджених. Сепсис. Пологові травми. | Асфіксія новонароджених. Гемолітична хвороба. Вроджені та спадкові захворювання новонароджених.
1 | 2 | 3 | <== 4 ==> | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Studopedia.info - Студопедия - 2014-2024 год . (0.245 сек.) російська версія | українська версія

Генерация страницы за: 0.245 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7