Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Dual-in-line configuration (DIL)


Дата добавления: 2015-10-19; просмотров: 445



В классической оптике, минимальный размер изображения точечного источника для идеальной оптической системы впервые был теоретически определен Эйри в 1834 году с помощью волнового представления о свете в рамках теории Гюйгенса-Френеля.

Физически минимальный размер изображения определяется процессом дифракции на входной апертуре (входном зрачке) оптической системы. В простейшем случае, когда источник является бесконечно удаленным и монохроматическим, а оптическая система представляет собой единственную идеальную тонкую положительную линзу (рис. 5.2), то в ее фокальной плоскости будет наблюдаться распределение интенсивности излучения, диктуемое дифракционными формулами Фраунгофера, вид которых определяется формой ограничивающей апертуры:

- для щели; - для круга.

Здесь - волновое число, a - полуширина или радиус апертуры, угол θ - угол дифракции. В последней формуле, называемой формулой Эйри, J1 – функция Бесселя первого рода первого порядка.

Оба распределения интенсивности имеют схожий вид в сечении (рис. 5.3).

Рис. 5.2 Схема элементарной оптической системы (объектива)

С изображением источника в классической оптике исторически принято отождествлять центральную часть данных распределений, т.е. нулевой дифракционный порядок – центральный кружок в случае круглой апертуры или центральную полосу для щели. Для оценки углового размера изображения θи используются формулы, получаемые из формул Фраунгофера:

(5.2)

здесь d - ширина щели или диаметр апертуры, соответственно d = 2a . При малых углах дифракции и можно применять соответствующие оценочные формулы для линейных размеров изображения в фокальной плоскости:

, (5.3)

где f - фокусное расстояние линзы (объектива).

Рис. 5.3 Дифракционные распределения интенсивности для апертур в виде круга и щели

В случае наличия двух близкорасположенных точечных источников, излучение которых полностью не когерентно (например, двойная звезда), распределение интенсивности в фокальной плоскости изображающей системы будет являться простой суммой распределений интенсивности от каждого из источников (рис. 5.4).

Принято считать, что оптическая система разрешает изображения источников, если величина интенсивности центрального минимума суммарного распределения не превышает уровня 0.85 от меньшего из соседних максимумов.

Рис. 5.4. Схема элементарной оптической системы (объектива) при наличии двух источников излучения

Рис. 5.5 Дифракционное распределение интенсивности в фокусе элементарной оптической системы (объектива) при наличии двух близкорасположенных некогерентных источников

Угловое расстояние между равными по яркости источниками, при котором достигается данное соотношение между соответствующими им дифракционными максимумами и минимумом суммарного распределения, является характеристикой оптической системы и называется ее разрешающей способностью. Также используется и более строгий критерий – изображения источников считаются разрешенными, если максимум одного распределения совпадает с первым минимумом другого (именно такая ситуация изображена на рис. 5.5), отношение интенсивности между минимумом и максимумами составляет в этом случае 0.74. Данный критерий удобен тем, что согласно нему, расстояние между максимумами оказывается равным размеру самих максимумов, так что для оценки разрешающей способности и минимального размера изображения можно пользоваться одними и теми же формулами (5.2) и (5.3).

В случае же когерентного (лазерная оптика) и частично-когерентного (микроскопия) излучения определение и критерии разрешающей способности будут существенно отличаться, в силу того, что дифракционное распределение от нескольких источников будет определяться уже не простым сложением независимых друг от друга действительных интенсивностей распределений от отдельных источников, но сложением комплексных амплитуд с учетом корреляционных отношений между ними.


<== предыдущая лекция | следующая лекция ==>
If the integral is convergent, then the integral is also convergent. | Звіт до завдання
<== 1 ==> |
Studopedia.info - Студопедия - 2014-2024 год . (0.212 сек.) російська версія | українська версія

Генерация страницы за: 0.212 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7