Студопедия — Решение. Используем уравнение прямой, проходящей через 2 точки и
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Используем уравнение прямой, проходящей через 2 точки и






Используем уравнение прямой, проходящей через 2 точки и

,

.

Здесь {–4, –10, –6} – координаты направляющего вектора прямой – ребра пирамиды .

 

Контрольные вопросы

 

Чем определяется угловой коэффициент прямой?

Каким образом определяется расстояние от точки до плоскости?

Как определить угол между двумя плоскостями?

Сформулируйте условие параллельности и перпендикулярности плоскостей.

Приведите вывод канонического уравнения прямой.

Что такое направляющий вектор прямой?

 

 

Контрольные задания

 

1. Составить уравнение прямой, проходящей через точку
В(5; 3) и имеющий нормальный вектор = (5; 0).

2. Составить уравнение прямой, проходящей через точку
С(–3; 3) и имеющий нормальный вектор = (–3; 2).

3.** Составить уравнение высоты BD в треугольнике с вершинами А (7; 0), В (3; 6), С (–1; 1).

4.* Составить уравнения диагоналей ромба, заданного точками А (2; 2), В (3; 5), С (4; 2), D (3; –1).

5. Составить уравнения сторон квадрата, заданного точками А (1; 1), В (4; 2), С (5; –1), D (2; –2).

6.** Треугольник задан точками А (5; 2), В (–1; –4), С (–5; –3). Составить уравнение прямой, проходящей через точку В параллельно АС.

7. Составить уравнения прямых, заданных двумя точками:

a. А (1; 3), В (4; 1); d. P (0; 0), Q (–3; 5);
b. С (–1; 5), D (3; –7); e. А (3; –5), В (3; 7);
c. М (–3; 0), N (0; 5); f. C (7; –1), D (–1; –1).

8.* Составить уравнения сторон треугольника с вершинами А (–1; 2), В (5; 3), С (4, –2).

9.* Составить уравнения диагоналей квадрата ABCD, заданного точками А (1; 1), В (4; 2), С (5; –1), D (2; –2).

10. Указать, какая пара уравнений соответствует параллельным прямым:

a. 2 x – 3 y + 5 = 0, 6 x – 9 y + 1 = 0; d. 3 x + 2 y + 3 = 0, 3 x – 2 y – 1 = 0;
b. 5 xy + 4 = 0, 10 x – 2 y + 1 = 0; e. 6 x + 10 y + 1=0, 3 x + 5y = 0;
c. 6 x – 3 y – 1 = 0, 2 x – 5 y + 5 = 0; f. 6 x – 3 y + 7 = 0, 2 x + y + 1 = 0.

11. Указать, какая пара уравнений соответствует перпендикулярным прямым:

a. 2 x + 3 y – 7 = 0, 3 x – 2 y = 0; c. 6 x – 4 y + 7 = 0, 8 x – 12 y – 1 = 0.
b. 5 x – 2 y + 1 = 0, 4 x + 10 y – 1 = 0;    

12.** Составить уравнение высоты AD треугольника, заданного точками A (–5; 3), B (3; 7), C (4; –1).

 

 

Глава 4

ВВЕДЕНИЕ В АНАЛИЗ

 

4.1. Предел последовательности. Предел функции

 

1. Числовой последовательностью называется функция , определённая на множестве натуральных чисел. Каждое значение называется элементом последовательности, а число n – его номером.

Обозначают: или .

2. Число а называют пределом последовательности , если для любого > 0 существует такое натуральное число N, что при всех выполняется неравенство

(*)

Обозначают:

3. Неравенство (*) равносильно неравенствам или

4. Последовательности, имеющие предел, называются сходящимися; если нет предела – расходящимися.

5. Из определения предела последовательности следует, что предел постоянной равен этой постоянной:

6. Бесконечно малой последовательностью называется , предел которой равен нулю, т.е. .

Для двух бесконечно малых последовательностей и – сумма, разность и произведение тоже является бесконечно малыми последовательностями.

1. Последовательность называется бесконечно большой, если для любого числа существует такой номер N, что при всех n > N выполняется неравенство: , при этом случае пишут .

2. Число b называется пределом функции при , если для любого числа существует такое , что при всех , удовлетворяющих условию выполняется неравенство .

Обозначение предела в точке а:

.

Если имеют конечный предел при , то

.

 

Пусть и – функции, одновременно обращающиеся в ноль, при и .

Отношение теряет смысл при . Тогда говорят, что функция в точке имеет неопределенность .
Предел указанного отношения может существовать. Задача отыскания предела называется раскрытием неопределенности вида .

Если при функции и стремятся к , то говорят, что в точке функция имеет неопределенность вида . Данная задача раскрытия неопределенности вида называется отыскания предела при условии, что ; .

Задача 4.1. В каких границах меняется , если < 3?







Дата добавления: 2014-10-22; просмотров: 3056. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия