Студопедия — Понятие евклидова пространства. Неравенство Коши-Буняковского
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие евклидова пространства. Неравенство Коши-Буняковского






ЛЕКЦИИ ПО ДИСЦИПЛИНЕ

«ЛИНЕЙНАЯ АЛГЕБРА»

 

Направление 080100

«Экономика»

 

Очная форма обучения

 

Пусть задано линейное пространство. Возникает вопрос: можно ли измерять расстояние между элементами (векторами) этого пространства, находить углы между векторами и длины (модули) этих векторов. Ответы на этот вопрос дает понятие евклидова линейного пространства.

Определение 3.1. Если в линейном пространстве любым двум элементам можно поставить в соответствие действительное число , называемое скалярным произведением векторов и удовлетворяющее аксиомам:

,

, ,

, ,

, причем ,

то это пространство называется евклидовым пространством.

Число называется скалярным квадратом вектора .

Аксиома определяет симметричность скалярного произведения, аксиомы – аддитивность и однородность по первому множителю, неотрицательность скалярного квадрата.

Поскольку евклидово пространство является линейным, то на него переносятся все понятия, определенные для линейного пространства. В частности, можно ввести понятие базиса и размерности евклидова пространства. Сформулируем простейшие следствия из аксиом евклидова пространства:

1) , ,

2) ,

3) .

Теорема 3.1. В евклидовом пространстве для любых двух векторов справедливо неравенство Коши-Буняковского:

. (3.1)

□ Отбрасывая тривиальный случай, когда один из векторов нулевой (в этом случае неравенство (3.1) выполняется), предположим, что . Рассмотрим при произвольном числе вектор и найдем его скалярный квадрат

.

Преобразовав скалярное произведение согласно аксиомам, получим

.

Левую часть полученного неравенства можно рассматривать как квадратный трехчлен относительно (), принимающий неотрицательные значения при каждом . Тогда его дискриминант должен быть неположительным, то есть

,

откуда и следует неравенство (3.1). ■

 







Дата добавления: 2015-10-19; просмотров: 873. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия