Студопедия — Решение. Уравнение имеет корни, если отсюда находим:
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Уравнение имеет корни, если отсюда находим:






Уравнение имеет корни, если отсюда находим:

Преобразуем уравнение к приведенному:

По теореме Виета: и, по условию:

Получим систему уравнений:

 

решая первые два уравнения находим: Подставляя эти значения в третье уравнение, определим m: m = 15. Теперь надо установить, удовлетворяет ли это значение m первоначальному условию, когда уравнение вообще имеет корни, т. е. условию:

Убеждаемся, что удовлетворяет, в самом деле:

Ответ: m = 15.

 

Пример 10. Найти условие, при котором разность корней уравнения равна m:

 

 

Решение

 

Заведомо надо учесть, что для существования корней уравнения дискриминант должен быть неотрицателен, т. е. должно выполняться неравенство:

 

Пусть и - корни уравнения, тогда, по условию:

С другой стороны, по теореме Виета:

Получим систему, состоящую из трех уравнений:

 

Из первых двух уравнений выразим и через m и p:

 

Подставим эти значения в третье уравнение и найдем:

 

Поскольку при тогда неравенство выполняется.

 

Ответ:

 

Пример 11. Найти условие, при котором разность квадратов корней уравнения равна

 

Решение

 

Мы допускаем, что уравнение имеет корни, а значит

Пусть и - корни заданного уравнения, тогда, по условию:

Преобразуем уравнение к приведенному, полагая, что:

Отсюда, по теореме Виета,

Получим систему трех уравнений:

 

Чтобы выполнялось первое равенство, потребуем, чтобы.

Из первых двух уравнений находим:

Подставляя в третье уравнение, получим:

 

Ответ:

 

Пример 12. При каком значении k один корень уравнения вдвое меньше другого:

 

 

Решение

 

1. Первый коэффициент уравнения не должен равняться нулю, иначе уравнение "вырождается" в линейное и задача теряет смысл, значит,

 

2. Чтобы уравнение имело два различных корня, его дискриминант должен быть положительным:

 

3. Допустим, что это условие выполняется, т. е. D > 0 и уравнение имеет два различных действительных корня. Обозначим их и.

Тогда, по условию:

Преобразуем уравнение к приведенному, получим:

 

По теореме Виета

 

Получим систему уравнений

 

Решим два первых уравнения и выразим из них и.

 

Подставим значения и в третье уравнение, получим:

 

Ясно, что при этом значении k первый коэффициент данного уравнения не равен нулю.

Выясним, будет ли при этом значении k положителен дискриминант. Для этого подставим значение k в формулу дискриминанта и установим знак результата:

 

 

Ответ: при

 

Пример 13. Дано уравнение корни которого и. Составить новое квадратное уравнение, корни которого были бы и

 

Решение

 

Так как данное уравнение имеет корни, тогда его первый коэффициент отличен от нуля, а дискриминант неотрицателен:

Так как и корни заданного уравнения, тогда, по теореме Виета, их сумма и произведение равны:

Чтобы составить новое квадратное уравнение, надо воспользоваться теоремой, обратной теореме Виета, а для этого необходимо найти сумму и произведение корней нового квадратного уравнения и полученные формулы выразить через сумму и произведение корней данного уравнения.

Пусть корни искомого уравнения и тогда искомым уравнением будет:

 

По условию:, а

Выразим сумму и произведение чисел и через сумму и произведение и.

 

 

Подставляя значения вместо суммы и произведения и в полученные равенства, находим для корней искомого уравнения:

 

Теперь можно составить искомое уравнение:

 

Ответ:

 








Дата добавления: 2015-04-16; просмотров: 646. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия