Студопедия — О постановке задач возбуждения поля
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

О постановке задач возбуждения поля






 

Список международных (непатентованных) и патентованных (торговых) названий основных антибактериальных средств, применяющихся для лечения ВП (продолжение)

 

Генерическое название (международной непатентованное название) Торговые (патентованные) названия
Цефоперазон/сульбактам Сульперазон
Цефотаксим Клафоран Цефантрал
Цефтриаксон Роцефин Лендацин Лонгацеф
Цефуроксим Зинацеф Кетоцеф
Ципрофлоксацин Ципробай Ципринол Цифран
Эритромицин Грюнамицин Эригексал Эрмицед
Эртапенем Инванз

 

 


[1] Исследование обязательно при тяжелой ВП

1 Выпот с количеством лейкоцитов > 25 000/мл (с преобладанием полиморфноядерных форм) и/или с обнаружением при бактериоскопии или посеве микроорганизмов и/или рН< 7,1

Глава 2

ИЗЛУЧЕНИЕ ЭЛКТРОМАГНИТНЫХ ВОЛН В НЕОГРАНИЧЕННОМ ПРОСТРАНСТВЕ.

О постановке задач возбуждения поля

Рассмотрим довольно общий случай постановки задачи о возбуждении электромагнитного поля заданными источниками. Пусть неограниченное изотропное пространство состоит из областей (рис. 2.1), в каждой из которых параметры среды являются непрерывными функциями координат. На поверхностях и , являющихся границами раздела этих сред, пусть хотя бы один из параметров имеет разрыв. Так как на поверхностях раздела сред уравнения Максвелла в дифференциальной форме теряют силу, мы должны решать уравнения электродинамики в каждой из областей и по отдельности и затем на поверхностях и сопрягать полученные значения.

Предположим, что необходимо найти решение уравнений Максвелла только в области . Для комплексных амплитуд имеем

(2.1)

Полученные решения уравнений (2.1) в области должны еще удовлетворять заданным граничным условиям на поверхностях и , ограничивающих рассматриваемую область . Граничные условия на поверхностях раздела сред будут сформулированы в гл.3.

Для упрощения считаем, что электрический гистерезис и магнитные потери отсутствуют, т.е. . Это предположение не нарушает общности получаемых результатов.

Отметим, что применительно определению поля в области (рис. 2.1) теорему Умова-Пойнтинга

при наличии в этой области сторонних электрических и магнитных токов можно записать так:

 

(2.2)

Рис. 2.1 К постановке задач возбуждения электромагнитного поля  

 

Последний интеграл в (2.2) берется как по поверхности ,так и по поверхности . При этом нормали к поверхностям и направлены так, как показано на рис. 2.1.

Из выражения (2.2) видно, что для определения энергетических соотношений в рассматриваемой области необходимо знать векторы и во всех внутренних точках области и тангенциальные составляющие этих векторов на поверхностях и .

Решение уравнений (2.1) или вытекающих из них уравнений второго порядка для вектора или вектора в общем случае неоднородных сред является очень сложной задачей. Введение же векторных потенциалов для неоднородных сред также сопряжено с определенными трудностями. Однако если бы мы хотели ввести понятие о векторных потенциалах при решении задач в неоднородных средах, то мы могли бы свести уравнения Максвелла (2.1) к следующим:

 

(2.1а)

Здесь и - токи электрической и магнитной поляризации, определяемые выражениями

, (2.3) . (2.4)

Причем и - произвольно выбираемые не зависящие от координат параметры среды в области . В частности, можно положить и . Тогда уравнения Гельмгольца для векторных потенциалов примут следующий вид:

, (2.5)

, (2.6)

где - не зависящий от координат коэффициент распространения. Поскольку уравнения Максвелла(2.1) являются линейными и применим принцип суперпозиции, т.е. , , то можно решать векторные уравнения Гельмгольца для , и для , . В первом случае в правой части должны стоять сторонние токи, во втором- токи поляризации. Однако при этом трудности решения задач для неоднородных сред не уменьшаются. На ряду с необходимостью удовлетворения решений граничным условиям на поверхностях и приходится еще, как правило, решать интегральные уравнения для вторичных токов в области , т.е. для токов поляризации.

Отметим, что когда поверхность отодвигается на бесконечность, область оказывается внешней областью относительно поверхности и тогда граничная задача называется внешней. В случае, когда поверхность стягивается в точку(исчезает), область оказывается внутренней областью относительно поверхности и тогда граничная задача называется внешней. В данной главе будет рассмотрена однородная изотропная среда области ; граница стянута в точку, а граница удалена на бесконечность.

Таким образом, будем далее рассматривать возбуждение электромагнитного поля при заданном распределении сторонних токов в неограниченной, однородной изотропной среде. Решения задач в такой среде очень хорошо разработаны и позволяют выявить основные закономерности возбуждения и распространения электромагнитных волн. Полученные при этом решения можно использовать при рассмотрении более сложных внутренних и внешних граничных задач. Поле, возбуждаемое источниками, расположенными в неограниченном пространстве, называют первичным (падающим) полем, а поле, отраженное границами сред,- вторичным полем. Граничную задачу при этом можно сформулировать так, что неизвестным оказывается только вторичное поле







Дата добавления: 2015-06-12; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия