Студопедия — Представление функции Грина в декартовой и цилиндрической системах координат
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Представление функции Грина в декартовой и цилиндрической системах координат






 

Часто электродинамические задачи необходимо решать в декартовой или цилиндрической системе координат. При этом используются представления функции Грина в интегральной форме. Последние можно получить с помощью выражения (2.16).

2.4.1. Рассмотрим прежде всего это выражение в декартовой системе координат. Формулу (2.16) можно упростить, выполнив интегрирование, скажем, по . Подынтегральное выражение (2.16) на плоскости комплексного переменного при фиксированных значениях и имеет две особые точки типа полюса при и при , где . Предположим, что , где k – действительная величина. Тогда на плоскости комплексного переменного первый полюс находится в верхней полуплоскости, а второй в нижней. Если , то

(2.25)

можно дополнить интегралом по полукругу бесконечно большого радиуса в верхней полуплоскости (рис. 2.4), где при подынтегральное выражение стремится к нулю. Тогда последний интеграл равен интегралу по замкнутому контуру , охватывающему особую точку. Применяя теорему о вычетах, находим, что интеграл равен произведению на вычет в верхней полуплоскости в точке . Выполняя вычисление, находим, что выражение (2.25) равно .

Если , то исходный интеграл (2.25) можно дополнить интегралом по полукругу бесконечно большого радиуса в нижней полуплоскости, где при подынтегральное выражение стремится к нулю. Тогда интеграл (2.25) равен интегралу по замкнутому контуру. Применяя теорему о вычетах, находим, что интеграл (2.25) равен .

Таким образом, учитывая значение интеграла по в формуле (2.16), получаем

, (2.26)

где знак «плюс» в показателе экспоненты берется при , а знак «минус» - при .

Если , то, выполним вычисление интеграла (2.25), получим тем же путем из формулы (2.16) выражение (2.26). Формула (2.26) остается верной и для среды с потерями, т.е. когда - комплексная величина.

Отметим, что в выражение (2.16) можно было выполнить интегрирование по или ; при этом получаются ещё два выражения, аналогичные (2.26). Формула (2.26) применяется весьма эффективно во многих внешних задачах электродинамики.

 







Дата добавления: 2015-06-12; просмотров: 352. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия