Студопедия — Вопрос 25: закон больших чисел. Лемма о среднем арифметическом случайных величин. Теорема Бернулли. Центральная предельная теорема
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 25: закон больших чисел. Лемма о среднем арифметическом случайных величин. Теорема Бернулли. Центральная предельная теорема






Лемма: Пусть Хi взаимонезависимые случайные величины i=1,…,n, с одной и той же дисперсией и мат. ожиданием M(x)=m

, тогда

Из Леммы следует:

- Мат. ожидание среднего арифметического и значение случайной величины не зависят от числа опытов

- Дисперсия среднего арифметического в n раз меньше дисперсии каждой из этих случайных величин, зависит от числа опытов

Теорема Чебышева. Если Х1, Х2,…,Хn,…- попарно независимые случайные величины, причем дисперсии их равномерно ограничены (не превышают постоянного числа С), то, как бы мало ни было положительное число , вероятность неравенства


будет как угодно близка к единице, если число случайных величин достаточно велико.

Другими словами, в условиях теоремы

.

Таким образом, теорема Чебышева утверждает, что если рассматривается достаточно большое число незави­симых случайных величин, имеющих ограниченные ди­сперсии, то почти достоверным можно считать событие, состоящее в том, что отклонение среднего арифметического случайных величин от среднего арифметического их ма­тематических ожиданий будет по абсолютной величине сколь угодно малым.

Доказательство. Введем в рассмотрение новую случайную величину—среднее арифметическое случайных величин

Найдем математическое ожидание . Пользуясь свойствами математического ожидания (постоянный множи­тель можно вынести за знак математического ожидания, математическое ожидание суммы равно сумме математи­ческих ожиданий слагаемых), получим

. (*)

Применяя к величине неравенство Чебышева, имеем

,

или, учитывая соотношение (*),

 

. (**).

Пользуясь свойствами дисперсии (постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат; дисперсия суммы независимых с.в. равна сумме дисперсий слагаемых), получим

 

.

 

По условию дисперсии всех с.в. ограничены постоянным числом С, т.е. имеют место неравенства: , поэтому (D(X1)+D(X2)+…+D(Xn))/n2 (C+C+…+C)/n2=nC/n2=c/n.

Итак, . (***)

Подставляя правую часть (***) в неравенство (**) (отчего последнее может быть лишь усилено), имеем

.

Отсюда, переходя к пределу при , получим

.

Наконец, учитывая, что вероятность не может превышать единицу, окончательно можем написать

.

Сущность доказанной теоремы такова: хотя от­дельные независимые случайные величины могут прини­мать значения, далекие от своих математических ожиданий, среднее арифметическое достаточно большого числа случай­ных величин с большой вероятностью принимает значе­ния, близкие к определенному постоянному числу, а именно к числу (M(X1)+M(X2)+…+M(Xn))/n (или к числу а в частном случае). Иными словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеянно мало.

Таким образом, нельзя уверенно предсказать, какое возможное значение примет каждая из случайных вели­чин, но можно предвидеть, какое значение примет их среднее арифметическое.

Итак, среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограничены) утрачивает характер случайной величины. Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются.

Теорема Чебышева справедлива не только для дискрет­ных, но и для непрерывных случайных величин; она является ярким примером, подтверждающим справедли­вость учения диалектического материализма о связи между случайностью и необходимостью.

Теорема Бернулли. Если в каждом из n независимых испытаний вероятность р появления события А постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности p по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами, если - сколь угодно малое поло­жительное число, то при соблюдении условий теоремы имеет место равенство

.

Доказательство. Обозначим через Х1 дискретную случайную величину—число появлений события в первом испытании, через Х2—во втором,..., Хn—в n-м испы­тании. Ясно, что каждая из величин может принять лишь два значения: 1 (событие А наступило) с вероят­ностью р и 0 (событие не появилось) с вероятностью 1—р=q.

Можно ли применить к рассматриваемым величинам теорему Чебышева? Можно, если случайные величины по­парно независимы и дисперсии их ограничены. Оба усло­вия выполняются. Действительно, попарная независимость величин X1, Х2,..., Хn следует из того, что испытания независимы. Дисперсия любой величины Xi (i= 1, 2,..., n) равна произведению p*q, так как p+q=1,то произве­дение pq не превышает 1/4 и, следовательно, дисперсии всех величин ограничены, например, числом С =1/4.

Применяя теорему Чебышева (частный случай) к рас­сматриваемым величинам, имеем

Приняв во внимание, что математическое ожидание а каждой из величин Xi (т. е. математическое ожидание числа появлений события в одном испытании) равно ве­роятности р наступления события, получим

Остается показать, что дробь (X1+X2+…Xn)/n равна относительной частоте т/п появлений события А в испытаниях. Действительно, каждая из величин X1,X2,…Xn при появлении события в соответствующем испытании принимает значение, равное единице; следовательно, сумма X1+X2+…+Xn равна числу m появления события в n испытаниях, а значит,

Учитывая, это равенство, окончательно получим

.

Итак, теорема Бернулли утверждает, что при относительная частота стремится по вероятности к p.







Дата добавления: 2015-06-15; просмотров: 1037. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия