Студопедия — Примеры решения типовых задач. 1.Является ли заданное отображение на своей естественной области определения непрерывным в точке ?
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения типовых задач. 1.Является ли заданное отображение на своей естественной области определения непрерывным в точке ?






1. Является ли заданное отображение на своей естественной области определения непрерывным в точке ?

 

Пример 1. , ,, .

Решение. Очевидно, что заданное отображение определено на всем . Представим его в виде , где , , и покажем, что и непрерывны в любой точке . Пусть последовательность сходится к в . Тогда

.

Отсюда следует, что непрерывно.

Докажем непрерывность . Будучи непрерывной, функция ограничена на , т. е. . А так как равномерно на , то начиная с некоторого номера (почему?). Тогда

.

Отсюда следует, что в . Поэтому в силу произвольности отображение непрерывно в любой точке из .

 

Пример 2. .

 

Решение. Пусть последовательность сходится к в . Тогда

при .

Теперь в силу неравенства Коши-Буняковского,

.

(полученная оценка показывает также, что принадлежит при из ; поэтому отображение определено на всем ). Значит, – непрерывное отображение в точке .

 

Пример 3. .

Решение. Покажем, что отображение не является непрерывным. Возьмём последовательность , которая стремится к нулюв , поскольку

при .

Рассмотрим теперь выражение

.

Следовательно, последовательность нестремится к нулю при ,а потому нестремится к в .

Пример 4. .

Решение. Покажем, что отображение не является непрерывным. Заметим, что

.

Возьмем последовательность , которая сходится к нулю в , поскольку

при .

Имеем

при ,

а потому нестремится к в .

2. Является ли заданное отображение : а) непрерывным;

б) равномерно непрерывным; в) удовлетворяющим условию Липшица?

Пример 1. .

Решение. а) Пусть . Отображение является непрерывным, так как

(мы воспользовались неравенством ).

б) Покажем, что не является равномерно непрерывным. Возьмём . Тогда при , но

,

а значит, не стремится к нулю при . Это противоречит определению равномерной непрерывности (проверьте).

в) Так как не является равномерно непрерывным, то оно не удовлетворяет условию Липшица (почему?).

 

Пример 2. .

Решение. Покажем, что удовлетворяет условию Липшица с константой . Заметим, что

.

Рассмотрим функцию . Тогда

.

Следовательно, по теореме Лагранжа

 

,

а значит,

.

Так как удовлетворяет условию Липшица, то оно равномерно непрерывно, а потому и непрерывно.

Пример 3. .

Решение. Покажем, что удовлетворяет условию Липшица. Действительно,

Так как , то по теореме Лагранжа

.

Поэтому при любых x, y справедливо неравенство

.

Так как удовлетворяет условию Липшица, то оно является равномерно непрерывным.

 

Пример 4. .

 

Решение. а) Покажем, что непрерывно. Действительно, если в , то числоваяпоследовательность сходится к (почему?). Тогда

при .

б) Покажем, что не является равномерно непрерывным. Пусть последовательности и заданы следующим образом:

, , , .

Тогда

при ,

но

при .

в) Так как не является равномерно непрерывным, то оно не удовлетворяет и условию Липшица.

 

Пример 5. .

Решение. а) Покажем, что не удовлетворяет условию Липшица. Допустим противное, то есть что

.

Возьмем . Так как

(1)

то , то есть , . Противоречие.

б) Покажем, что является равномерно непрерывным. Заметим, что функция является равномерно непрерывной на . Действительно, она равномерно непрерывна на по теореме Кантора и равномерно непрерывна на по теореме Лагранжа, так как при . Равномерная непрерывность функции означает, что

.

Теперь, если , то . Поэтому в силу равенства (1)

.








Дата добавления: 2015-08-30; просмотров: 4069. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия