Студопедия — Собственные значения и собственные векторы матрицы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Собственные значения и собственные векторы матрицы






 

Определение. Рассмотрим квадратную матрицу . Пусть для некоторого ненулевого вектора и числа l выполняется равенство

АХ = λ Х. (8)

Тогда вектор называется собственным вектором матрицы А, а числоназывается собственным значением этой матрицы.

Определение. Уравнение называется характеристическим уравнением.

Определение. Корнем многочлена называется значение переменной, обращающее этот многочлен в нуль. Корнем матричного многочлена будет матрица, обращающая этот многочлен в нулевую матрицу.

 

Теорема 1. Собственные значения матрицы А являются корнями характеристического многочлена .

Верно и обратное: каждый корень характеристического многочлена матрицы А будет её собственным значением.

Теорема 2. Если – собственные значения матрицы А, то:

1)

2)

Эти равенства можно использовать в качестве проверки вычисленных собственных значений.

Теорема 3. (Теорема Гамильтона – Кэли).

Любая квадратная матрица является корнем своего характеристического многочлена, т. е. , где под нулём понимается нулевая матрица, а под свободным членом характеристического многочлена – этот свободный член, умноженный на единичную матрицу.

 

Пример 1. Найти собственные значения матрицы и проверить правильность решения по теореме 3. Проиллюстрировать теорему Гамильтона – Кэли.

Решение. Чтобы найти собственные значения, приравняем к нулю характеристический многочлен:

=0.

Корни квадратного уравнения: .

Сумма корней ; произведение корней .

Подставим матрицу А в характеристический многочлен:

.

В результате получили нулевую матрицу. Это и означает, что матрица является корнем своего характеристического многочлена.

 

Пример 2. Показать, что матрица является корнем своего характеристического многочлена.

Решение. ;

(.

Найдём характеристический многочлен матрицы:

.

Вычислим , для этого нужно найти

, и .

Тогда

.

 







Дата добавления: 2015-08-12; просмотров: 1573. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия