Студопедия — Нахождение собственных векторов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нахождение собственных векторов






Для нахождения собственных векторов преобразуем равенство (8)

АХ = λ Х,

перепишем его в виде

АХ − λ Х = 0, или АХ − λ ЕХ = 0 Þ

(А − λ Е) Х = 0. (9)

Здесь 0 – нулевая матрица. Перейдя к координатной форме, получим однородную систему линейных уравнений. В случае , где – собственные значения, её главный определитель равен нулю (). Поэтому эта система обязательно имеет ненулевые (нетривиальные) решения, так как равный нулю определитель имеет пропорциональные строки, и :

(10)

Подставляя поочерёдно значения , полученные из характеристического уравнения, в уравнения системы (10), найдем n собственных векторов. Собственный вектор можно определить с точностью до постоянного множителя.

3.1. Случай

Матричное уравнение (А − λ Е) Х = 0 имеет развёрнутую форму:

. (11)

Восстановим систему уравнений:

(12)

Это линейная однородная система. При и её главный определитель равен нулю. Поскольку частные определители содержат нулевые столбцы, они также равны нулю. По теореме Крамера эта система имеет бесчисленное множество решений. Ранг матрицы А − λ Е равен единице, и одно уравнение пропорционально другому, т.е. оно является лишним.

Пример 1. Найти собственные значения и собственные векторы линейного преобразования с матрицей .

Решение. Составим характеристическое уравнение:

.

Найдём собственные значения λ, решая уравнение . Его корни λ1 = 6, λ2 = –1. Это собственные значения матрицы А. Собственные векторы находятся из двух систем уравнений

и .

Главный определитель каждой из этих систем равен нулю. Поэтому каждая из этих однородных систем сводится к одному уравнению.

1) При λ1 = 6 имеем систему , которая сводится к уравнению . Из уравнения следует: , или . В качестве собственного вектора, соответствующего собственному значению λ1 = 6, можно взять вектор . Подойдёт также любой вектор, кратный Х 1, например, или .

2) При λ 2 = –1 система имеет вид , она приводится к одному уравнению и . Собственный вектор, соответствующий данному собственному значению λ;2 = –1, (или любой вектор, кратный ему).

Ответ: , , , .

 

3.1. Случай

Пример 2. Найти собственные значения и собственные векторы линейного преобразования с матрицей .

Решение. Составим характеристическое уравнение

.

Разложим определитель по элементам первой строки:

.

Раскрыв скобки и приведя подобные члены, получим уравнение третьей степени:

;

.

Чтобы решить это уравнение, поступим следующим образом. Методом подбора найдём один из корней уравнения λ1, которым может быть один из делителей свободного члена. Нетрудно убедиться в том, что λ1 = 3 есть корень уравнения. Это значит, что левая часть уравнения делится без остатка на разность (λ − 3), т. е. .

Определим два других корня из уравнения . По теореме Виета получим следующие два корня: λ2 = 6, λ3 = –2. Для нахождения собственных векторов нужно решить три системы уравнений, последовательно подставляя полученные собственные значения.

1) При λ1 = 3 имеем однородную систему уравнений

или

Для решения системы составим матрицу из коэффициентов системы и с помощью элементарных преобразований приведем ее к следующему виду

~ ~ .

Поскольку две последние строки пропорциональны, одну из них можно удалить, тогда исходная система примет вид:

.

Решая эту систему, находим . Положим , тогда получим собственный вектор , соответствующий собственному значению λ1=3.

2) При λ2 = 6 имеем систему уравнений

.

Составим матрицу из коэффициентов системы и с помощью элементарных преобразований приведем её к следующему виду

~ ~ .

Последнюю строку матрицы можно удалить, а вторую строку разделить на (–4), тогда придём к системе двух уравнений с тремя неизвестными, одно из которых может быть выбрано произвольно:

.

Пусть , тогда , . Собственный вектор .

3) Точно так же находим собственный вектор , соответствующий собственному значению λ3 = –2.

 

Следует заметить, что матрица преобразования А в данном примере является симметрической, так как её элементы, расположенные над главной и под главной диагональю, одинаковы. В этом случае, в чём легко убедиться, собственные векторы взаимно ортогональны:

,

,

.

Ответ: λ1 = 3, λ2 = 6, λ3 = –2, , , .







Дата добавления: 2015-08-12; просмотров: 666. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия