Студопедия — Термодинамика поверхностных явлений
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Термодинамика поверхностных явлений






 

Термодинамика поверхностных явлений была развита Гиббсом. Он принимал поверхностный слой за новую "поверхностную фазу", отличную от объемных фаз тем, что ее толщина мала, и поэтому рассматривал поверхностный слой как геометрическую разделяющую поверхность, применяя к ней термодинамические уравнения.

Площадь поверхности фазы Σ является наряду с объемом V системы ее параметром. Изменение этой площади сопровождается работой

 

δ A = – σ d Σ. (65.1)

 

Величина σ называется коэффициентом поверхностного натяжения. Из опыта известно, что σ зависит от жидкости и среды, с которой жидкость граничит, и является функцией температуры (с ростом температуры убывает).

Пользуясь выражением для элементарной работы (65.1), можно показать, что сила поверхностного натяжения по величине равна

 

f = σ l, (65.2)

 

где l – длина края пленки (или разреза граничной поверхности), и направлена перпендикулярно краю по касательной к поверхности жидкости. Наиболее просто формула (65.2) получается, если рассмотреть пленку, натянутую на рамку с подвижной стороной (см. рис. 28). Пусть подвижная сторона под действием приложенной к ней силы 2 f перемещается на dx. Площадь пленки увеличивается при этом на 2 ldx (с учетом двух сторон пленки). Для работы силы имеются два выражения:

 

δ A = 2 fdx = σ2 ldx,

 

откуда и следует приведенная формула.

Свободная энергия системы, состоящей из двух фаз с некоторой поверхностью раздела, зависит от температуры, параметров каждой фазы и площади разделяющей их поверхности:

F = F (T, V 1, V 2, N 1, N 2, Σ). (65.3)

 

Для каждой фазы свободная энергия зависит только от температуры и параметров фазы:

 

Fi = Fi (T, Vi, Ni), i = 1, 2. (65.4)

 

Сумма F 1 + F 2 включает лишь объемную часть свободной энергии системы и не равна F. Величину

 

F Σ = F – (F 1 + F 2) (65.5)

 

можно рассматривать как свободную энергию поверхности раздела двух фаз (или вообще двух сред). Аналогично можно ввести внутреннюю энергию и энтропию поверхности раздела:

 

U Σ = U – (U 1 + U 2), S Σ = S – (S 1 + S 2). (65.6)

 

Основное уравнение термодинамики для всей системы имеет вид

 

dU = TdSp 1 dV 1p 2 dV 2 + σ d Σ + μ1 dN 1 + μ2 dN 2. (65.7)

 

Для каждой фазы

 

dUi = TdSipidVi + μ idNi, i = 1, 2. (65.8)

 

Если из уравнения (65.7) вычесть сумму уравнений (65.8), то получится основное уравнение термодинамики для поверхности раздела сред:

 

dU Σ = TdS Σ + σ d Σ. (65.9)

 

Соответственно дифференциал свободной энергии этой поверхности определяется выражением

 

dF Σ = – S Σ dT + σ d Σ. (65.10)

 

Частные производные от свободной энергии равны

 

F Σ / ¶ T)Σ = – S Σ, (¶ F Σ / ¶Σ) T = σ. (65.11)

 

Поскольку коэффициент поверхностного натяжения для данной системы зависит только от температуры σ = σ(T) (это фактически термическое уравнение состояния поверхности раздела), то второе соотношение (65.11) интегрируется:

 

F Σ = σ(T) × Σ (65.12)

 

(постоянная интегрирования по физическим соображениям равна нулю). Энтропия находится из первого соотношения (65.11):

 

S Σ = – d σ / dT × Σ. (65.13)

 

Внутренняя энергия имеет вид

 

U Σ = (σ – T × d σ / dT) × Σ. (65.14)

 

При изотермическом изменении площади поверхности раздела поглощается количество теплоты

 

δ Q = dU – σ d Σ = – T × d σ / dT × d Σ.

 

Теплота образования единицы поверхности раздела равна

 

q = – T × d σ / dT. (65.15)

 

Она положительна, потому что, как показывает опыт, σ уменьшается с увеличением температуры.

 







Дата добавления: 2015-08-12; просмотров: 1678. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия