Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

The Vector, Parametric, Canonical, and General Equations of a Straight Line





 

The position of a straight line in space is determined by a point on this line and a vector parallel to the line. Let us write an

equation of such a line in space.

z

0 y

x

To this end, we take an arbitrary point on the line, join М0 and М to the origin, and find the coordinates of the radius-vectors

,

.

It is seen from the figure, that .

If the point М belongs to the straight line, then the vectors and are collinear.

Consequently, these vectors meet the collinearity condition

,

where t is a parameter.

Let us write the collinearity condition in the form

; (*)

equation (*) is the vector equation of the given line.

Suppose given the coordinates of the point M0(x0,y0,z0) and the direction vector . Let us write the left-hand side of equation (*) in the vector form

the direction vector is

.

Let us represent equation (*) in the form

.

Equating the respective coefficients of the unit vectors on the right- and left- sides, we obtain parametric equations of the straight line:

or (27)

Eliminating the parameter t, we obtain the canonical equations of a straight line:

. (28)

Example. Write the canonical equations of the straight line passing through the point parallel to the vector . We compose the canonical equation by formula (28):

.

Equating each fraction to a parameter t, we obtain the parametric equations of the line:

 

The general equation of a straight line in space. Since a straight line in space is represented as the intersection of two planes, the general equation of a straight line in space has the form of a system

where the first and the second equations are the equations of the corresponding planes.

It is always possible to transform the general equation of a straight line into a canonical equation and vice versa.

Since the direction of is perpendicular to those of the vectors and , it follows that

,

i.e., the canonical equation is

.

The angle between straight lines in space. The parallelism and perpendicularity conditions for straight lines. Let us find the angle between intersecting right lines given by their canonical equations

; .

The angle between these two lines is equal to the angle between their direction vectors

; ,

i.e.,

.

The parallelism and perpendicularity conditions for right lines coincide with the collinearity and perpendicularity conditions of their direction vectors and .

If straight lines are perpendicular, then , i.e., , and the perpendicularity condition is

.

If straight lines are parallel, then the vector is collinear to , i.e., their coordinates are proportional, and the proportionality condition is

.

 

The equation of the straight line passing through two given points. Suppose given two points and in space.

z

M2

M1

 

 

0 y

 

x

 







Дата добавления: 2015-09-04; просмотров: 4844. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия