Студопедия — Приведение общего уравнения линии второго порядка к каноническому виду
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приведение общего уравнения линии второго порядка к каноническому виду






Для исследований приведем общее уравнение линии второго порядка к одному из канонических видов.

Существует такая система координат, в которой уравнение (1) не содержит произведения xy, то есть B = 0.

Пусть координаты точки M в системе координат XOY. Повернем оси координат на угол в положительном направлении и обозначим (x', y') координаты точки M в новой системе координат X'OY'. (чертеж 1.)

Чертеж 1.

Найдем связь между этими координатами. Очевидно, что:

(так как ); (2)

(так как ); (3)

Рассмотрим . Так как он прямоугольный, то , . (4)

Рассмотрим теперь . Он также прямоугольный, поэтому , . (5)

Таким образом, с учетом того, что , из равенств (2)-(5) получим: (6)

Следовательно, система (6) представляет собой выражение старых координат через новые при повороте XOY на угол α вокруг О (0,0).

Замечание. Для того чтобы получить выражение новых координат через старые, достаточно угол α в формулах (6) заменить на угол (−α), так как при повороте системы координат X′OY ′ на угол (−α) мы получим систему XOY.

Подставим формулы (6) в уравнение (1), получим:

Соберем коэффициенты при соответствующих неизвестных.

При , получим:

,

При :

, (7)

При :

,

При :

,

При :

.

Таким образом, уравнение (1) с учётом замены (6) принимает вид:

(8)

Подберем угол таким образом, чтобы коэффициент . Из (7) следует, что поэтому

После данного преобразования уравнение (1) примет вид:

. (9)

Докажем, что при повороте на любой угол α имеет место равенство:

(10)

Так как мы подобрали угол α так, что , то из (10) следует, что

. (11)

Чтобы проанализировать уравнение кривой (9), рассмотрим три

случая:

1) (эллиптический случай);

2) (гиперболический случай);

3) (параболический случай).

Подробнее рассмотрим эллиптический случай. Из следует, что , то есть знаки совпадают. Пусть A′ > 0, C′ > 0. Выделим полные квадраты при неизвестных x′, y′, получим:

Дополним члены, содержащие x’ и y’,до полного квадрата:

, (12)

где

Положим , тогда уравнение (12) примет вид: . (13)

a) Пусть . Разделим обе части уравнения (13) на , получим:

(14)

Так как и , то предположим, что . (15)

Из (14) и (15) следует, что мы получили каноническое уравнение эллипса

b) Пусть F′ > 0, тогда в уравнении (13) слева стоит неотрицательное число, а справа - отрицательное, поэтому точек, удовлетворяющих данному уравнению, не существует.

c) Пусть F′ = 0. Тогда уравнению (13) удовлетворяет только одна точка , то есть точка с координатами

Рассмотрим гиперболический случай. Из следует, что , то есть числа имеют разные знаки. Выполняя аналогичные преобразования, как и для эллиптического случая, получим уравнение кривой:

a) Предположим, что . Отсюда:

(16)

Так как и разных знаков, следовательно, одна из скобок больше нуля, другая скобка меньше нуля. Пусть (17)

тогда мы получаем каноническое уравнение гиперболы:

b) При уравнение принимает вид: (18)

Пусть , тогда и уравнение (18) примет вид: откуда Таким образом, получили уравнения двух пересекающихся прямых.

Рассмотрим параболический случай. Так как , то .

a) Пусть . Так как после поворота , то уравнение (9) преобразуется до вида: (19)

Соберём члены, содержащие , и дополним их до полного квадрата:

тогда уравнение (19) примет вид: или , (20)

где . Из (20) следует, что

Рассмотрим два случая:

· Пусть , тогда , то есть (21)

где

Положим , тогда уравнение (21) примет вид:

Это каноническое уравнение параболы, симметричной относительно

оси (OY).

· Пусть , тогда уравнение (20) перепишется в виде

(22)

1. Если , то получим уравнение оси (OY) .

2. Если , то возможны два случая. Если A′ и F′ одного знака, то точек, удовлетворяющих данному уравнению, нет; если же A′ и F′ разных знаков, то , где , поэтому и уравнение (22) описывает две параллельные прямые:

b) Пусть , тогда уравнение (9) примет вид

(23)

Если , а , то точек, удовлетворяющих уравнению (23), нет; если же или отличны от нуля, то уравнение (23) описывает прямую.

 

Вывод. Путем преобразований кривой второго порядка, определяемой уравнением (1) мы можем получить уравнения таких линии второго порядка, как:

1. - уравнение эллипса

2. - уравнение гиперболы

3. - уравнение параболы

4. - совокупности двуз пересекающихся прямых

5. - совокупности двух параллельных прямых

 

 

Содержание темы «Линии второго порядка» в элементарной математике

В математике рассматриваются линии второго порядка, как конические сечения: окружность, эллипс, гипербола, парабола; или как множество точек обладающих некоторыми свойствами.

Рассмотрим каждую линию второго порядка подробнее, определяя линии как множество точек.

ОКРУЖНОСТЬ

Определение 1.1. Окружность - множество точек плоскости, равноудаленных от данной точки М0, называемой ее центром.[9.С.65]

Общий вид уравнения







Дата добавления: 2015-10-01; просмотров: 672. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия