Студопедия — Исследование свойств гиперболы по ее уравнению
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Исследование свойств гиперболы по ее уравнению






1) Пересечение гиперболы с осями координат:

Очевидно, что гипербола состоит из двух ветвей: правой и левой, простирающихся в бесконечность.

В уравнении (12) положим, что y=0, получим: отсюда . Следовательно, точки являются точками пересечения гиперболы с осью (чертеж 19.).

Чертеж 19.

Положим, что в уравнении (12) х=0, и получим: , следовательно, уравнение гиперболы не пересекает ось .

ЗАМЕЧАНИЕ: Если мнимая ось гиперболы имеет длину 2a и направлена по оси (OX), а действительная ось длиной 2b совпадает с осью (OY), то уравнение гиперболы имеет вид: . [1.С.107-108]

Определение 3.2. Гиперболы, заданные уравнениями и , называются сопряженными гиперболами.

Определение 3.3. Если a=b, гипербола называется равносторонней.

2) Симметрии гиперболы относительно координатных осей и :

Пусть принадлежит гиперболе, то есть верное равенство. Точка симметрична точке относительно оси ОХ:

- верное равенство. Следовательно, принадлежит гиперболе, следовательно, гипербола симметрична относительно ОХ.

Точка симметрична точке относительно оси ОУ, следовательно, гипербола симметрична относительно оси ОУ.

Точка симметрична точке относительно О (центра), отсюда следует, что гипербола симметрична относительно начала координат. [1.С.108]

3) Асимптоты гиперболы:

Текущая точка гиперболы при движении по ней в бесконечность неограниченно приближается к некоторой прямой, которая называется асимптотой гиперболы. Асимптотами являются прямые, которые имеют следующие уравнения:

и ,

Пусть текущая точка гиперболы, ее проекция на ось абсцисс. Прямая пересекает прямую , заданную указанным уравнением в точке . Докажем: что при .

Доказательство:

.Расстояние это ордината точки , лежащей на прямой . Она равна . Расстояние это ордината точки гиперболы, которую находим из её канонического уравнения: Тогда

Умножим и разделим равенство (13) на (),следовательно, получим:

 

При знаменатель дроби неограниченно увеличивается, следовательно, дробь стремится к нулю.

- уравнение гиперболы, в которой а - являются асимптотами гиперболы. (чертеж 20.) [1.С.108]

Чертеж 20.

 

4) Фокусы гиперболы:

Пусть фокусы гиперболы лежат на оси Ох. Межфокусное расстояние гиперболы равно причем . Заметим, что по определению гиперболы.

Следовательно, фокусы гиперболы. [1.С.109]

5) Директориальное свойство гиперболы:

Определение 3.4. Директрисами гиперболы называются прямые, параллельные канонической оси ОУ и отстоящие от этой оси на расстояние .

Уравнения директрис гиперболы имеют вид: ++ и , если гипербола задана уравнением . Если гипербола задана уравнением , то директрисы определяются уравнениями .

 

6) Эксцентриситет гиперболы:

Определение 3.5. Отношение называется эксцентриситетом гиперболы. Так как , то

Если при постоянном значении , число будет изменяться от нуля до бесконечности, то будет измениться от до бесконечности. Если , то гипербола будет стремиться к лучам (чертеж 21.).

Чертеж 21.

Если , то гипербола будет стремиться к параллельным прямым (чертеж 22.). [1.С.109]

Чертеж 22.

7) Касательная к гиперболе:

Уравнение касательной к гиперболе , где - координаты точки касания, а соответственно действительная и мнимая полуоси гиперболы (чертеж 23.).

Чертеж 23.

8) Диаметр гиперболы:

Если гипербола задана уравнением , то её диамерт, сопряженный хордам с угловым коэффициентом k, определяется уравнением .

 

ПАРАБОЛА

Определение 4.1. Парабола- это геометрическое множество точек, для каждой из которых расстояние от некоторой фиксированной точки, называемой фокусом, равно расстоянию до некоторой прямой, называемой директрисой (директриса не проходит через фокус). [8.С.589]

Общий вид уравнения .







Дата добавления: 2015-10-01; просмотров: 847. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия