Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СУММИРОВАНИЕ ДИСКРЕТНЫХ ФУНКЦИЙ





 

Пусть дискретная функция определена при положительных значениях аргумента . Требуется найти такую дискретную функцию , для которой функция является первой разностью. Эта задача аналогична задаче о нахождении первообразной в анализе непрерывных функций. Искомая функция имеет вид

, где

Действительно

.

Функция называется первообразной для дискретной функции .

Если дискретная функция определена при всех целочисленных значениях аргумента k=0, ±1, ±2, …, то для определения первообразной необходимо дополнительно потребовать, чтобы при каждом конечном сходился ряд . При этом условии первообразная определяется выражением

.

Если функция является первообразной для функции , то и функция также является первообразной для дискретной функции , где – постоянная величина. Действительно

.

Таким образом, общий вид первообразной для данной дискретной функции определяется формулой

.

Значение постоянной можно выразить через значение первообразной при некотором фиксированном значении аргумента, например при

.

Подставляя полученное выражение в формулу (19), найдем

.

Откуда

(20)

для любого .

Формула (20) является аналогом соответствующей формулы интегрального исчисления, связывающей интеграл с первообразной, ее можно записать в виде

, для . (21)

Сумму, стоящую в правой части этого выражения, иногда называют определенной суммой по аналогии с определенным интегралом. Учитывая условие , можно переписать равенство (21) следующим образом

(22)

или при

. (23)

Для дискретных функций справедлива формула суммирования по частям, аналогичная формуле интегрирования по частям для обычных функций. Если в формуле (23) положить

, .

то

.







Дата добавления: 2014-12-06; просмотров: 966. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия