Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СУММИРОВАНИЕ ДИСКРЕТНЫХ ФУНКЦИЙ





 

Пусть дискретная функция определена при положительных значениях аргумента . Требуется найти такую дискретную функцию , для которой функция является первой разностью. Эта задача аналогична задаче о нахождении первообразной в анализе непрерывных функций. Искомая функция имеет вид

, где

Действительно

.

Функция называется первообразной для дискретной функции .

Если дискретная функция определена при всех целочисленных значениях аргумента k=0, ±1, ±2, …, то для определения первообразной необходимо дополнительно потребовать, чтобы при каждом конечном сходился ряд . При этом условии первообразная определяется выражением

.

Если функция является первообразной для функции , то и функция также является первообразной для дискретной функции , где – постоянная величина. Действительно

.

Таким образом, общий вид первообразной для данной дискретной функции определяется формулой

.

Значение постоянной можно выразить через значение первообразной при некотором фиксированном значении аргумента, например при

.

Подставляя полученное выражение в формулу (19), найдем

.

Откуда

(20)

для любого .

Формула (20) является аналогом соответствующей формулы интегрального исчисления, связывающей интеграл с первообразной, ее можно записать в виде

, для . (21)

Сумму, стоящую в правой части этого выражения, иногда называют определенной суммой по аналогии с определенным интегралом. Учитывая условие , можно переписать равенство (21) следующим образом

(22)

или при

. (23)

Для дискретных функций справедлива формула суммирования по частям, аналогичная формуле интегрирования по частям для обычных функций. Если в формуле (23) положить

, .

то

.







Дата добавления: 2014-12-06; просмотров: 966. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия