Студопедия — В этой точке выполнялись условия
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

В этой точке выполнялись условия






,(2)

называемые условиями Коши-Римана (С-R) или Даламбера-Эйлера.

При выполнении условий (C-R) производная функции может быть найдена по одной из следующих формул:

(3)

Приведем два определения, имеющих фундаментальное значение в теории функции комплексного переменного.

Определение. Однозначная функция называется аналитической в точке , если она дифференцируема в некоторой окрестности точки .

Определение. Функция называется аналитической в области, если она дифференцируема в каждой точке этой области.

Аналитичность функции в точке и дифференцируемость в точке – разные понятия. Если функция аналитична в точке, то она, безусловно, дифференцируема в ней, но обратное может и не иметь места. Функция может быть дифференцируема в точке, но не быть дифференцируемой ни в какой окрестности этой точки, в таком случае она не будет аналитической в рассматриваемой точке.

Условием аналитичности функции в области является выполнимость условий Коши-Римана для всех точек этой области.

Пример. Выясним, является ли аналитичнойфункция .

Так как ,имеем . Отсюда

, .

Проверим выполнение условий (C-R):

,

.

Условия (C-R) выполняются при любых конечных х и у, значит функция аналитична во всей комплексной плоскости (кроме ).●

Определение. Точки, в которых является аналитической, называются регулярными (правильными). Если аналитична в , за исключением некоторых точек, то эти точки называются особыми. Точка называется изолированной особой точкой, если вокруг нее можно описать круг, не содержащий других особых точек.

Геометрический смысл модуля и аргумента производной. Пусть функция дифференцируема в области и . Функция отобразит точку плоскости в точку плоскости , кривую , проходящую через точку в кривую , проходящую через .

Модуль производной есть предел отношения бесконечно малого расстояния между отображенными точками и к бесконечно малому расстоянию между их прообразами и . Поэтому величину можно рассматривать геометрически как коэффициент растяжения (если ) в точке при отображении области в области , осуществляемом функцией . В каждой точке области в каждом направлении коэффициент растяжения будет свой.

 

Для аргумента производной можно записать

,

где и это углы и , которые векторы и образуют с действительной осью.

Пусть и углы, образованные касательными к кривой и в точках и с действительной осью. Тогда при , а , поэтому определяет угол, на который нужно повернуть касательную к кривой в точке , чтобы получить направление к касательной к кривой в точке .

Таким образом, геометрический смысл модуля и аргумента производной состоит в том, что при отображении, осуществляемом аналитической функцией, удовлетворяющей условию , модуль k определяет коэффициент преобразования подобия бесконечно малого линейного элемента в точке ,а аргументпроизводной определяет угол поворота этого элемента.

Если рассмотреть две кривые и , и , то углы и между их касательными, вообще говоря, неравные.

Определение. Отображение области на область , обладающее свойствами постоянства растяжений () в любом направлении и сохранения (или консерватизма) углов между двумя кривыми, пересекающимися в точке , называется конформным (подобным в малом).

Отображение, осуществляемое аналитической функцией, является конформным во всех точках, в которых .

Например, функция задает отображение, которое является конформным во всех точках, кроме точки (0; 0).







Дата добавления: 2015-10-18; просмотров: 540. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия