Студопедия — Кора большого мозга
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кора большого мозга






Развитиекоры больших полушарий (неокортекса) человека и млекопи­тающих в эмбриогенезе происходит из вентрикулярной герминативной зоны конечного мозга, где расположены малоспециализированные пролиферирующие клетки. Из этих клеток дифференцируются нейроциты неокортекса. При этом клетки утрачивают способность к делению и мигрируют в фор­мирующуюся корковую пластинку вдоль вертикально ориентированных во­локон эмбриональных радиальных глиоцитов, исчезающих после рождения. Вначале в корковую пластинку поступают нейроциты будущих I и VI сло­ев, т.е. наиболее поверхностного и глубокого слоев коры. Затем, как бы раздвигая эту первичную корковую закладку, в нее встраиваются в направ­лении изнутри и кнаружи последовательно нейроны V, IV, IIIи II слоев. Этот процесс осуществляется за счет образования клеток в небольших уча­стках вентрикулярной зоны в различные периоды эмбриогенеза (гетерохронно). В каждом из этих участков образуются группы нейронов, последователь­но выстраивающихся вдоль одного или нескольких волокон радиальной глии в виде колонки. Подобные онтогене­тические колонки в дальнейшем служат основой для формирования функ­циональных интегративных единиц неокортекса: мини- и макроколонок. Для установления сроков формирования в эмбриогенезе различных групп ней­ронов применяют радиоизотопный метод.

Строение.Кора большого мозга представлена слоем серого вещества толщиной около 3мм. Наиболее сильно развита она в передней централь­ной извилине, где ее толщина достигает 5мм. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга. В коре содержится около 10-14млрд нервных клеток. Различные участки ее, отли­чающиеся друг от друга некоторыми особенностями расположения и стро­ения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представ­ляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные границы между ними отсутствуют. Для коры характерно распо­ложение клеток и волокон слоями.

Цитоархитектоника коры большого мозга. Мультиполярные нейроны коры весьма разнообразны по форме. Среди них можно выделить пирамид­ные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны.

Пирамидные нейроны составляют основную и наиболее специфическую для коры большого мозга форму. Размеры 10-140мкм. Тело вытянутое треугольное, вершина которого обращена к поверхности коры. От вершины и боковых поверхностей тела отходят дендриты, заканчивающиеся в различных слоях серого вещества. От основания пирамидных клеток берут начало нейриты, в одних клетках ко­роткие, образующие ветвления в пределах данного участка коры, в дру­гих - длинные, поступающие в белое вещество.

Пирамидные клетки различных слоев коры отличаются размерами и име­ют разное функциональное значение. Мелкие клетки - вставочные нейроны, нейриты которых связывают отдельные участки коры одного полушария (ассоциативные нейроны) или 2 полушарий (комис-суральные нейроны). Эти клетки встречаются в разных количествах во всех слоях коры. Особенно богата ими кора большого мозга. Нейриты круп­ных пирамид принимают участие в образовании пирамидных путей, проеци­рующих импульсы в соответствующие центры ствола и спинного мозга.

Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В дви­гательной зоне коры различают 6 основных слоев: I - молекулярный, II - наружный зернистый, III - пирамидных нейронов, IV - внутренний зернистый, V - ганглионарный, VI - слой поли­морфных клеток.

В период эмбрионального развития первыми на 6-м месяце дифферен­цируются V и VI слои, а II, III и IV слои развиваются позднее - на 8-м месяце внутриутробного развития.

Молекулярный слой коры содержит небольшое количество мелких ассоци­ативных клеток веретеновидной формы. Их нейриты про­ходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя. Однако основная масса волокон этого сплетения представлена ветвлениями дендритов нижележащих слоев.

Наружный зернистый слой образован мелкими нейронами диаметром 10мкм, имеющими округлую, угловатую и пирамидальную форму, и звездчатыми нейроцитами. Дендриты этих клеток поднимаются в молеку­лярный слой. Нейриты или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя.

Самый широкий слой коры большого мозга - пирамидный. Он особен­но хорошо развит в прецентральной извилине. Величина пирамидных кле­ток последовательно увеличивается в пределах 10-40мкм от наружной зоны этого слоя к внутренней. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Дендриты, берущие начало от боковых поверхностей пирамиды и ее основания, имеют незна­чительную длину и образуют синап-сы со смежными клетками этого слоя. Нейрит пирамидной клетки всегда отходит от ее основания. В мелких клет­ках он остается в пределах коры; аксон же, принадлежащий крупной пира­миде, обычно формирует миелиновое ассоциативное или комиссуральное волокно, идущее в белое вещество.

Внутренний зернистый слой в некоторых полях коры развит очень сильно (например, в зрите-льной зоне коры). Но он может почти отсутствовать (в прецентральной извилине). Этот слой образо-ван мелкими звездчатыми нейронами. В него входит большое количество горизонтальных волокон.

Ганглионарный слой коры образован крупными пирамидами, причем область прецентральной извилины содержит гигантские пирамиды, описан­ные впервые киевским анатомом В.А. Бецем в 1874 г. (клетки Беца). Это очень крупные клетки, достигающие в высоту 120мкм и в ширину 80мкм. В отличие от других пирамидных клеток коры гигантские пирамиды харак­теризуются наличием крупных глыбок хроматофильного вещества. Нейриты клеток этого слоя образуют главную часть кортикоспинальных и кортиконуклеарных путей и оканчиваются синапсами на клетках моторных ядер.

Прежде чем пирамидный путь покинет кору, от него отходит множе­ство коллатералей. Аксоны от гигантских пирамид Беца дают коллатерали, посылающие тормозящие импульсы в саму кору. Коллатерали волокон пи­рамидного пути идут в полосатое тело, красное ядро, ретикулярную фор­мацию, ядра моста и нижних олив. Ядра моста и нижних олив передают сигнал в мозжечок. Таким образом, когда пирамидный путь передает сиг­нал, вызывающий моторную активность, в спинной мозг, одновременно сигналы получают базальные ганглии, ствол мозга и мозжечок. Помимо коллатералей пирамидных путей, есть волокна, которые идут непос­редственно от коры к промежу-точным ядрам: хвостатому телу, красному ядру, ядрам ретикулярной формации ствола мозга и др.

Слой полиморфных клеток образован нейронами различной, преиму­щественно веретенообразной, формы. Внешняя зона этого слоя содержит более крупные клетки. Нейроны внутренней зоны мельче и лежат на боль­шом расстоянии друг от друга. Нейриты клеток полиморфного слоя уходят в белое вещество в составе эфферентных путей головного мозга. Дендриты достигают молекулярного слоя коры.

Крупные пирамидные клетки являются основными нейронами, к кото­рым по центрифугальным волокнам приходят импульсы из других отделов ЦНС и передаются через синапсы на их дендриты и тела. От больших пирамид импульс уходит по аксонам, формирующим центрипетальные эфферентные пути. Внутри коры между нейронами фор­мируются сложные связи.

Исследуя ассоциативную кору, составляющую 90% неокортекса, Сентаготаи и представители его школы установили, что структурно-функцио­нальной единицей неокортекса является модуль - вертикальная колонка диаметром 300мкм. Модуль организован вокруг кортико-кортикального волокна, представляющего собой волокно, идущее либо от пирамидных клеток того же полушария (ассоциативное волокно), либо от противоположного (комиссуральное). В модуль входят два таламокортикальных волокна - специфических афферентных волокна, оканчивающихся в IV слое коры на шипиковых звездчатых нейронах и базальных дендритах пирамидных нейронов. Каждый модуль, по мнению Сентаготаи, подразделяется на 2 микромодуля диаметром менее 100 мкм. Всего в неокортексе человека примерно 3 млн модулей. Аксоны пирамидных ней­ронов модуля проецируются на 3 модуля той же стороны и через мозо­листое тело на 2 модуля противоположного полушария. В отличие от спе­цифических афферентных волокон, оканчивающихся в IV слое коры, кортико-кортикальные волокна образуют окончания во всех слоях коры, и, достигая I слоя, дают горизонтальные ветви, выходящие далеко за пределы модуля. Помимо специфических афферентных волокон, на выходные пира­мидные нейроны возбуждающее влияние оказывают шипиковые звездчатые нейроны. Различают 2 типа ши­пиковых звездчатых клеток: 1) шипиковые звездчатые нейроны фокального типа, образующие множественные синапсы на апикальных дендритах пи­рамидного нейрона, 2) шипиковые звездчатые нейроны диффузного типа, аксоны которых широко ветвятся в IV слое и возбуждают базальные дендриты пирамидных нейронов. Коллатерали аксо­нов пирамидных нейронов вызывают диффузное возбуждение соседних пирамид.

Тормозная система модуля представлена следующими типами нейронов: 1) клетки с аксональной кисточкой образуют в I слое множественные тормозные синапсы на горизонтальных ветвях кортико-кортикальных волокон; 2) корзинчатые нейроны - тормозные нейроны, образующие тормозящие синапсы на телах практически всех пирамид. Они под­разделяются на малые корзинчатые нейроны, оказываю­щие тормозящее влияние на пирамиды II, III и V слоев модуля, и большие корзинчатые клетки, располагающиеся на периферии модуля и имеющие тенденцию подавлять пирамидные нейроны соседних модулей; 3) аксоаксональные нейроны, тормозящие пира­мидные нейроны II и III слоев. Каждая такая клетка образует тормозящие синапсы на начальных участках аксонов сотен нейронов II и III слоев. Они тормозят, таким образом, кортико-кортикальные волокна, но не проекци­онные волокна нейронов V слоя; 4) клетки с двойным букетом дендритов располагаются во II и III слоях и, тормозя практически все тормозные нейроны, производят вторичное возбуждающее действие на пирамидные нейроны. Ветви их аксонов направлены вверх и вниз и распро­страняются в узкой колонке (50мкм). Таким образом, клетка с двойным букетом дендритов растормаживает пирамидные нейроны в микромодуле (в колонке диаметром 50-100мкм). Мощный возбуждающий эффект фокаль­ных шипиковых звездчатых клеток объясняется тем, что они одновременно возбуждают пирамидные нейроны и клетку с двойным букетом дендритов. Таким образом, первые 3 тормозных нейрона тормозят пирамидные клет­ки, а клетки с двойным букетом дендритов возбуждают их, угнетая тормозные нейроны. Система тормозных нейронов играет роль фильтра, тормозящего часть пирамид­ных нейронов коры.

Кора различных полей характеризуется преимущественным развитием тех или других ее слоев. Так, в моторных центрах коры, например в передней центральной извилине, сильно развиты III, V и VI и плохо выражены II и IV слои. Это так на­зываемый а гранулярный тип коры. Из этих областей берут начало нисходя­щие проводящие пути ЦНС. В чувствительных корковых центрах, где заканчиваются афферентные проводники, идущие от органов обоня­ния, слуха и зрения, слабо развиты слои, содержащие крупные и средние пирами­ды, тогда как зернистые слои (II и IV) достигают своего максимального развития. Это гранулярный тип коры.

Миелоархитектоннка коры. Среди нервных волокон коры полушарий большого мозга можно выделить ассоциативные волокна, связывающие от­дельные участки коры одного полушария, комиссуральные, соединяющие кору различных полушарий, и проекционные волокна, как афферентные, так и эфферентные, которые связывают кору с ядрами низших отделов ЦНС. Эти волокна в коре полушарий образуют радиальные лучи, заканчивающиеся в пирамидном слое. Кроме уже описанного тангенциального сплетения молекулярного слоя, на уровне внутреннего зернистого и ганглионарного слоев расположены 2 танген­циальных слоя миелиновых нервных волокон - внешняя и внутренняя по­лосы, которые, очевидно, образуются концевыми ветвлениями афферент­ных волокон и коллатералей нейритов клеток коры, таких как пирамидные нейроны. Вступая в синаптические связи с нейронами коры, горизонталь­ные волокна обеспечивают широкое распространение в ней нервного им­пульса. Строение коры в различных отделах большого мозга сильно варьи­рует, поэтому детальное изучение ее клеточного состава и хода волокон является предметом специального курса. Кора полушарий головного мозга содержит мощный нейроглиальный аппарат, выполняющий трофическую, защитную, опорную и разграничительную функции.







Дата добавления: 2015-12-04; просмотров: 112. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия