Студопедия — Цвет как психофизиологическое явление
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Цвет как психофизиологическое явление






 

Проблемы в психологии цвета. Представленная тема изучалась еще с античных времен, и из тех мыслителей, которые стояли у истоков науки о цвете, а также развивали затем эти идеи, нужно выделить И.В.Гете, В.Кандинского, Гегеля, А.Ф.Лосева, И.Ньютона, М.Люшера и др. Многие из тех проблем, с которыми они в свое время столкнулись, до сих пор актуальны, а многочисленные вопросы требуют ответа. Если их обобщить, то можно сказать, что они касаются в первую очередь субъективности восприятия цвета, сложностей в измерении цвета, а также множественности объективных и субъективных факторов, влияющих на восприятие и психосемантику цвета.

Также существует проблема, связанная с тем, что ответ на вопрос о природе цвета, полученный в психофизиологических исследованиях, оказывается в радикальном противоречии с житейским опытом человека. Остановимся на ней подробнее. Представления о свете и цвете формируются на основе многолетнего зрительного опыта. Мы определяем цвет как свойство, как физическую характеристику внешнего объекта, аналогичную весу, плотности (мы говорим: «Яблоко – красное»). Свет также видится как характеристика источника излучения. Причина этого – «объектность» нашего восприятия, суть которого заключается в том, что субъективные (психические, феноменальные) образы нашего восприятия представлены сознанию как объекты среды, они отождествляются с предметами внешнего мира. Для обыденного опыта цвет и свет не порождаются зрением, а только передаются с помощью зрения. Далее, существует терминологическое смешение между физикой и психофизиологией с применением терминов «свет» и «цвет». С точки зрения физики, свет – это электромагнитное излучение в диапазоне от 400 до 700 нм, т.е. видимая часть спектра, а также некоторые другие участки спектра, невидимые глазом. Термин «цвет» в физике обычно используется для обозначения монохроматического или узкополосного излучения. Например, выражение: «Призма разлагает белый свет на цветные лучи» является очень распространенным в физической литературе. Таким образом, физика рассматривает свойства электромагнитного излучения.

Обратимся теперь к истории развития представлений о цвете.

Развитие теорий цветового зрения. Как уже отмечалось, фундаментальный вклад в изучение этого явления был сделан античными философами. Платон, Евклид, Птолмей, Декарт говорили о двойственной сущности света. В природе существуют два типа излучений: сильное и слабое, которые имеют соответственно два источника: естественный (солнце) и искусственный (факел). Живые существа содержат в себе слабое отраженное излучение, которое выходит из глаз, а механизм видения состоит в соединении двух однотипных излучений, исходящих от предмета и из глаза. Это соединение и преобразует излучение в психологический феномен видения. На основе этой оригинальной теории Евклид и Птолмей положили начало геометрической оптике, сохранившей свое значение и для нас.

Затем, эти представления были развиты М.В.Ломоносовым, который также ввел замечание о том, что цвет как явление порождается смешением трех типов излучений, представляющих собой легкие, средние и тяжелые частицы. В зависимости от того, каких частиц содержится больше в данном излучении, таким будет и цветовое ощущение при попадании этого ощущения в глаз.

В 1704 г. выходит знаменитый труд Исаака Ньютона «Оптика», в котором впервые был описан экспериментальный метод исследования цветового зрения. Он называется методом аддитивного смешения цветов. Ньютон первый экспериментально доказал, что цвет – это свойство нашего восприятия, и природа его в устройстве органов чувств, способных интерпретировать определенным образом воздействие электромагнитных излучений. Его ошибка в том, что он предположил резонансный механизм генерации цвета, т.е., он считал, что определенное сочетание вибраций различных волокон вызывает в мозге определенное ощущение цвета. Однако, более важно то, что Ньютон выделил взаимодействие физиологического и психологического уровней в природе цвета.

В самом начале XIX века Томас Юнг выявил, что в общем случае достаточно иметь всего три составляющие из спектра, чтобы получить с их помощью все остальные цвета. Его идеи были продолжены Германом фон Гельмгольцем. Но он утверждал, что важнейшая характеристика, которой должны обладать эти элементы – это широкополосная чувствительность к различным излучениям. Гельмгольц предположил, что, перебирая разные тройки составляющих по определенным принципам, можно найти ту единственную, которая и будет раскрывать специфику этих элементов, т.е. определить максимум чувствительности каждого из этих элементов. При этом ряд феноменов цветового зрения оставался без объяснения. Один из них касался «чистого» цвета, т.е. такого, в котором наблюдатель не может обнаружить его составленности из других цветов. Теория Юнга-Гельмгольца объясняла это тем, что при некотором излучении максимально возбуждается один из фоторецепторов, и минимально – два других.

По-другому этот вопрос решал Эвальд Геринг. Он обратил внимание, что чистые цвета группируются в пары таким образом, что один элемент пары никогда не обнаруживается в цвете одновременно с другим. Красный в этом смысле противостоит зеленому, желтый – синему, и белый – черному. Он назвал такие пары оппонентными. В настоящее время можно по достоинству оценить тот вклад, который гипотеза Геринга внесла в науку о цвете, т.к. его понятие оппонентности оказалось фундаментальным для всех последующих работ по цветовому зрению.

Говоря об историческом развитии представлений о цвете, нужно сказать, что параллельно этому процессу формировалась семантика цвета. Причем, у самых разных культур, разнесенных во времени и пространстве, обнаруживаются принципиально схожие символические значения цветов. Особенно это касается, как на то указывают многие авторы, знаменитой «цветовой триады» - белого, красного и черного. Так, белый цвет всегда был связан с добром, светом, чистотой, божественностью; черный означал зло, мрак, грязь, грех, иногда землю; красный же воспринимался амбивалентно: с одной стороны как сила и любовь, а с другой – как кровь и война.

Таким образом, действительно, мы не обнаруживаем новых смыслов цвета, но «звучание» некоторых из них существенно меняется. В ХХ веке цвет активно используется как символ общественно-политических движений и явлений. Опосредованность жизни революционной России символикой красного цвета была настолько широкой, что он стал именем нарицательным. Если обратиться к ХХI веку, то можно вспомнить «оранжевую революцию» на Украине, которая наглядно показала важность невербальных компонентов тех или иных идей, которые приводят в движение народные массы.

Рассмотрим теперь собственно процесс формирования цветового ощущения.

Физиологические механизмы восприятия цвета. Возвращаясь к положению о том, что цвет – это сложное и многогранное явление, можно схематически изобразить, что собой представляет цвет с точки зрения физики, физиологии и психологии. Пусть источник испускает световой поток, а поверхность наблюдаемого предмета отражает свет в соответствии с распределением ее коэффициента отражения. Тогда спектральный состав излучения, направленного в глаз наблюдателя, находится перемножением координат этих двух излучений. Другими словами, уже на этом этапе оказали свое влияние освещение и характеристики предмета, такие как его текстура (кроме того, нужно учитывать форму предмета, фон). Попав на сетчатку глаза, излучение вызывает реакцию фоторецепторов. Они ответственны за возникновение ощущений красного, зеленого и синего. Интегральные реакции фоторецепторов зависят от их спектральной чувствительности и мощности излучения, приходящихся на соответствующие участки спектра. Сигналы о величине реакций всех трех групп фоторецепторов передаются в мозг, вызывая соответственно ощущения красного, синего и зеленого цветов. Они складываются в единое ощущение. Например, при преобладании реакций рецепторов, ответственных за возникновение «зеленых» сигналов появляется ощущение зеленого цвета. Если перевес на стороне «зеленых» и «красных» одновременно, возникает ощущение желтого. Излучения разных спектральных составов могут перекрываться и поэтому могут давать одинаковые соотношения интенсивностей сигналов и, следовательно, вызывать ощущения одинаковых цветов. Процесс формирования цветового ощущения осложняется психологическими факторами. Далее, влияние цвета связано с его семантикой, сложившейся исторически, с индивидуальным опытом человека, особенностями его характера, эмоционально-мотивационной сферы и личности в целом; кроме того, влияет состояние здоровья, потому что люди с определенными заболеваниями совершенно иначе воспринимают цвет, чем здоровые люди.

Далее, хотелось бы подробнее остановиться на собственно физиологических механизмах цветового зрения. В нервной системе существуют два пути обработки зрительной информации: «сетчатка – таламус - кора» и «сетчатка - переднее двухолмие – кора». Цветовой анализ излучения осуществляется по первому пути. Сущность теории цветового зрения состоит в том, что фоторецепторы, которые представлены палочками и колбочками, реагируют только на излучение видимой части спектра. Палочки и колбочки имеют общую схему строения: наружный сегмент, в мембранных дисках которого – зрительный пигмент и внутренний сегмент, содержащий митохондрии и аппарат Гольджи, тело с клеточным ядром и синаптическую ножку.

Кванты света поглощаются в рецепторах специализированными молекулами – зрительными фотопигментами. Эти молекулы состоят из двух частей: хромофора (красящей части молекулы, определяющей цвет рецептора при освещении) и белка (опсина). Хромофор представлен альдегидом спиртов – витаминов А1 и А2 (ретиналь 1 и ретиналь 2). Так вот спектральные характеристики пигментов определяются комбинациями одного из ретиналей с той или иной разновидностью опсинов.

Каждый фоторецептор содержит только один фотопигмент, характеризующийся тем или иным спектром поглощения. В этой связи выделяют коротко-, средне- и длинноволновые колбочки. Реакцией фоторецептора на свет является гиперполяризация, возникающая в результате уменьшения проницаемости плазматической мембраны наружного сегмента для ионов Na+. Гиперполяризационная реакция рецептора на свет является прекращением длящейся в темноте деполяризации мембраны. Необычность ситуации в том, что стимулом, возбуждающим фоторецептор служит здесь не свет, а темнота. Это отличие его от рецепторов других модальностей.

Усилительное взаимодействие между фоторецепторами разного типа приводит к «смешению цветовых сигналов» и, как следствие, к уменьшению цветового и яркостного контрастов, к «размыванию» границ объекта. Наличие одного типа рецепторов недостаточно для различения цветов: в этом случае излучения любого спектрального состава могут быть уравнены для глаза путем изменения только их энергии. Чтобы цветоразличение было возможно, необходимо как минимум два типа рецепторов с разной спектральной чувствительностью. Тогда излучения с разным спектральным составом будут возбуждать их в разных соотношениях. Анализ этих соотношений осуществляется уже нейронными структурами последующих уровней.

Согласно одной из гипотез синаптического взаимодействия рецепторов с биполярами и горизонтальными клетками, сигнал от рецепторов поступает на горизонтальную клетку и через локальный участок ее мембраны синаптически воздействует на биполяр. В результате биполяр имеет спектральную характеристику горизонтальной клетки. Кроме того, горизонтальная клетка выполняет функцию инвентора. Это приводит к удвоению типов биполярных клеток по отношению к числу типов горизонтальных клеток.

Горизонтальные клетки контролируют адаптационные изменения в сетчатке и участвуют в механизмах пространственного контраста и дирекциональной чувствительности, а также они в формировании спектральных и пространственных свойств рецептивных полей цветокодирующих и ахроматических биполяров. Амакриновые клетки получают входные сигналы от биполяров и других амакриновых клеток и посылают сигнал к ганглиозным клеткам или к другим биполярам. Возможно, что их роль состоит в том, что, модулируя передачу сигнала в звене «биполяр - ганглиозная клетка», они участвуют в формировании цветоизбирательности ганглиозной клетки.

Собственно в слое ганглиозных клеток и завершается анализ излучения в сетчатке. Гранит в 1955 г. выделил среди них клетки, реагирующие на широкий спектр излучений (доминаторы), и клетки, избирательно настроенные на узкий диапазон длин волн (модуляторы). Доминаторам приписывалась функция кодирования яркости цвета, а модуляторам – функция кодирования цветового тона. В последующих работах других авторов установлено, что модуляторы являются «редуцированным вариантом» так называемых спектрально-оппонентных клеток, которые возбуждаются на одни длины волн и тормозятся на другие.

Далее, по зрительному нерву импульсы передаются в мозг, а именно, в клетки правого и левого наружного коленчатого тела (НКТ). Это основной подкорковый центр зрительной системы, локализующийся в таламусе и осуществляющий переработку информации, получаемой от сетчатки.

Дорсальный отдел НКТ – основной для окончаний зрительных волокон, он имеет слоистое строение. По размеру сомы и аксо-дендритного ветвления все клетки НКТ делятся на мелкие (парвоцеллюлярные) и крупные (магноцеллюлярные). В парвоцеллюлярных слоях НКТ выделяют широкополосные Wb-клетки и узкополосные Nb-клетки. Первые реагируют на излучение, которое ярче фона, а вторые – когда стимулы темнее фона. Интересно в этой связи то, что максимально насыщенными цвета, кроме красных, воспринимаются не на темном фоне, а на светлом ахроматическом фоне. Например, синий цвет наблюдается максимально насыщенным, когда его яркость составляет лишь 10% от яркости фона, т. е., в условиях, оптимальных для активации Nb-нейронов. Магноцеллюлярные слои связаны, с позиций разных авторов, либо с кодированием яркости, либо с кодированием движущихся объектов. Итак, система спектрально-оппонентных нейронов в НКТ мало отличается от таковой в слое ганглиозных клеток, что позволяет считать НКТ релейной «станцией», обеспечивающей выделение и обострение контрастов.

Обобщая, можно выделить в ретино-таламо-кортикальном пути преобразования зрительной информации две подсистемы Х-нейронов, ответственных за восприятие цвета и формы, и Y-нейронов, связанных с восприятием движения. Первые выделяют цветовые свойства как таковые и, кроме того, участвуют в выделении цветовых контуров. В Y-нейронах цветовое кодирование используется для выделения движущихся объектов на цветовом фоне. Собственно цветовое кодирование образует отдельный канал, который начинается на уровне колбочек и включает, далее, фотопические горизонтальные клетки, биполяры и ганглиозные клетки Х-типа и Х-нейроны с двойной оппнентностью НКТ. Завершается система кодирования цвета спектрально-селективными нейронами зрительной коры.

Информация, выделенная из светового излучения этой системой цветового анализатора, распределяется далее в различные зоны коры, где она используется для построения более сложных психических феноменов. Например, можно предположить, что включение цвета в образ восприятия осуществляется через цветоконстантные нейроны поля V4, а включение цвета в мнемические феномены (например, образы представления цвета) осуществляется с помощью клеток лобной коры, которые обеспечивают сохранение, по словам Измайлова Ч.А. и Соколова Е.Н., «...контекста временной организации событий.». Такая же информация может поступать в зоны формирования речи, где она используется для генерации цветовых названий.

 







Дата добавления: 2015-12-04; просмотров: 131. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия