Студопедия — Висячие конструктивные системы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Висячие конструктивные системы






 

Для перекрытия зданий (особенно больших пролётов) могут применяться висячие (вантовые) конструктивные системы, перекрывающие пролёты от 50 до 400 м. Несущими элементами в висячих конструкциях, как правило, являются стальные тросы, канаты, полосы и листы, закреплённые в опорных конструкциях. Так как стальные тросы в висячих конструкциях работают на растяжение, то материал несущих элементов этих конструкций используется наиболее эффективно. Так, например, расход стали на 1 м2 висячего покрытия пролётом 70–80 м составляет не более 15 кг, а применение металлических ферм или рам для перекрытия такого же пролёта потребовало бы расхода металла от 80 до 120 кг/м2.

В зависимости от конструктивного исполнения и условий работы несущих элементов различают плоские и пространственные висячие системы. К плоским относят системы, состоящие из основного несущего элемента (троса, каната), перекинутого через жёсткие стойки-пилоны и закреплённого концами к заглублённым в грунт анкерам или к бортовым элементам, например, балкам, которые опираются на заанкеренные стойки-пилоны. При этом тросы и стойки-пилоны с анкерами находятся в одной или параллельных плоскостях. Ограждающая конструкция покрытия укладывается на тросы или подвешивается к ним (рис. 5.19).

Рис. 5.19. Вариант решения плоской висячей конструктивной системы: 1 – опорный бортовой элемент; 2 – трос (канат); 3 – опорная стойка; 4 – фундамент; 5 – оттяжка; 6 – анкер. Стрелкой показан уклон покрытия для водостока

 

Пространственная висячая система состоит: 1) из опорного контура, имеющего, как правило, криволинейное замкнутое очертание, и опирающегося на колонны или несущие стены; 2) из системы тросов, образующих криволинейную поверхность. На тросы укладывают или подвешивают к ним ограждающую конструкцию покрытия(рис. 5.20).

Для обеспечения устойчивости висячих систем, т. е. их стабилизации, используют следующие приёмы (рис. 5.21): 1) пригрузка элементами пок-рытия, например, железобетонными плитами или утепляющим материалом с массой до 1 кН/м2 (100 кг/м2) – схемы 1 и 2 на рис. 5.21; 2) устройство жёсткой по форме конструкции висячего покрытия (например, в виде предварительно напряжённой оболочки или провисающей металлической фермы) – схемы 3 и 4 (рис. 5.21); 3) предварительное напряжение несущих канатов стабилизирующими канатами или другими элементами – схемы 5, 6, 7 и 8 (рис. 5.21).

Рис. 5.20. Пространственные висячие системы: а – пространственная висячая система с центральным кольцом (спортивная арена, г. Монтевидео); б – то же с центральной опорой (автогараж в Киеве); 1 – опорный контур; 2 – несущие тросы (канаты); 3 – плиты покрытия, подвешенные к канатам на крюках; 4 – центральное кольцо с фонарём; 5 – стена под опорным контуром; 6 – водоотвод; 7 – продольный шов между плитами; 8, 9, 10 – соответственно паро-, тепло-и гидроизоляция; 11 – крюки для подвешивания плит к канатам; 12 – центральный контур для крепления канатов; 13 – опоры в виде колонн под наружным опорным контуром; 14 – центральная опора; 15 – поперечные швы между плитами, заполняемые бетоном при временной пригрузке покрытия

Рис.5.21. Приёмы стабилизации висячих конструктивных систем: 1 – несущие тросы; 2 – предвари-тельно напряжённые стабилизиру-ющие тросы; 3 – балки; 4 – плиты покрытия; 5 – мембрана; 6 – утяже-ляющий утеплитель; 7 – железобе-тонные плиты, подвешиваемые к тросам на крюках; 8 – крюки; 9 – швы между плитами, заполняемые бето-ном (раствором) под временной пригрузкой покрытия; 10 – провиса-ющая ферма; 11 – трос-струна; 12 – промежуточные опоры для свободного опирания струн; 13 – распорки; 14 – центральный барабан; 15 – растяжки; 16 – диа-гональные растяжки; 17 – узел соединения несущей и стабилизирующей вант.В верхнем левом углу указаны номера схем стабилизации висячих систем

Разновидностью висячей конструктивной системы является мембранная конструкция покрытия, состоящая из закреплённых в опорном контуре стальных или алюминиевых полос-листов, возможно взаимно пересекающихся и взаимно переплетающихся. При устройстве мембранных покрытий полосы-листы укладывают на специальные подстилающие элементы (на «постель») в виде направляющих, фиксирующих проектную геометрическую форму покрытия и обеспечивающих его стабилизацию. В качестве подстилающих элементов могут служить стальные балки, полосы или лёгкие висячие фермы, располагаемые по направлениям главной кривизны покрытия. Снаружи подстилающие элементы, как и элементы мембраны, крепят к внешнему опорному контуру, а внутри – к центральному растянутому контуру (рис. 5.22.1 и 5.22.2).

 

Рис. 5.22.1. Мембранное покрытие Ø 160 м спортивно-концертного комплекса в Санкт-Петербурге: а – план покрытия; б – разрез здания

Рис. 5.22.2. Узлы мембранного покрытия Ø 160 м (к рис. 5.22.1)

 

Преимущество мембранной системы перед висячей состоит в том, что мембрана является одновременно несущей и ограждающей конструкцией, на которую укладывается паро-, тепло- и гидроизоляция.

Выбор конструктивной системы здания зависит от его функционального назначения, которое определяет пролёты между вертикальными опорами, высоту и капитальность здания. При малых пролётах (до 12 м), как правило, применяют коробчатые или стоечно-балочные системы; при значительных пролётах (от 18 до 60 м и более) применяют стоечно-балочные системы, плоские или пространственные криволинейные системы, висячие и складчатые системы из железобетона и металла.

Применение пространственных конструктивных систем в виде сводов, оболочек, куполов, складок, а также сетчатых и висячих конструкций обеспечивает снижение приведённой толщины несущей конструкции и существенную экономию материалов.







Дата добавления: 2015-04-16; просмотров: 565. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия