Студопедия — Обратное преобразование Лапласа имеет вид
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обратное преобразование Лапласа имеет вид






f (t) = , (1.3.2)

где j – мнимая единица (j 2 = – 1), а интегрирование в (1.3.2) проводится по бесконечно удаленному контуру комплексной плоскости для действительного значения переменной s.

Для практического применения используют таблицы преобразований Лапласа (Web-сайт MCS), полученные на основании выражений (1.3.1) и (1.3.2). Пример показан в таблице 1.3.1.

Переменную s в преобразовании Лапласа можно рассматривать как оператор дифференцирования

s º . (1.3.3)

Аналогично можно ввести оператор интегрирования

. (1.3.4)

Продемонстрируем использование преобразования Лапласа для решения дифференциальных уравнений (типа 2.1.3) с постоянными коэффициентами. Преобразование Лапласа уравнения (2.1.3) дает в соответствии с таблицей 1.3.1

B [ s 2 Y (s)– sy (0)–d y (0)/d t ]+ C [ sY (s)–y(0)] + DY (s) = X (s). (1.3.5)

Если x (t) = 0 (входной сигнал отсутствует), y (0) = y 0 и d y (0)/d t = 0, то

Bs 2 Y (s) – Bs y 0 + CsY (s) – Cy 0 + DY (s) = 0. (1.3.6)

 

Таблица 1.3.1

f (t) F (s)
Ступенчатая функция Хевисайда, q (t) 1/ s
Импульсная функция Дирака d (t)  
tn n!/ sn +1
sin(w t) w /(s 2 + w 2)
cos(w t) s /(s 2 + w 2)
exp(- at) 1/(s + a)
f (k) (t) = d k f (t)/d tk skF (s)- sk -1 f (0)- sk -2 f’ (0)-…- - sf (k -1)(0)
F (s)/ s + (1/ s)
exp(- at) sin(w t) w /[(s 2 + a 2) + w 2]
exp(- at) cos(w t) (s + a)/[(s 2 + a 2) + w 2]

Выражая отсюда Y (s), получим образ выходного сигнала

Y (s) = . (1.3.7)

Если полином q (s) = Bs 2 + Cs + D, стоящий в знаменателе (1.3.7), приравнять нулю, то получим характеристическое уравнение, названное так потому, что его корни (или полюса) определяют характер движения системы. Корни полинома p (s) = (Bs + + C) y 0, стоящего в числителе (1.3.7), называют нулями системы. В полюсах функция Y (s) обращается в бесконечность, а в нулях она становится равной нулю. Расположение полюсов и нулей на комплексной s -плоскости определяет характер собственного (свободного) движения системы.

Полином q (s) можно записать в виде

q (s) = (ss 1) (ss 2), (1.3.8)

где s 1 и s 2 – корни полинома.

Тогда

Y (s) = . (1.3.9)

Пример 1.3.1. Рассмотрим частный случай, когда D / B = 2, а С / B = 3. Тогда выражение (1.3.9) примет вид

Y (s) = . (1.3.10)

Положение полюсов и нуля этой функции на s -плоскости показано на рис. 1.3.1, где s = s + jw

 
 

 


Рис. 1.3.1

 

В общем случае, разложив (1.3.9) на элементарные дроби, получим

Y (s) = , (1.3.11)

где k 1 и k 2 – коэффициенты разложения, называемые вычетами.

Теперь применим к (1.3.11) обратное преобразование Лапласа

y (t) = L-1{ }= L-1{ }+L-1{ }.

(1.3.12)

С помощью таблицы 1.3.1 находим решение

y (t) = k 1exp(s 1 t) + k 2 k 1exp(s 2 t) (1.3.13)

уравнения (2.1.3) в отсутствии входного воздействия, т.е., так называемое, свободное движение системы.

Часто бывает необходимо определить установившееся, или конечное, значение y (t). Теорема о конечном значении гласит, что:

(1.3.14)

где допускается наличие простого полюса Y (s) в начале координат s -плоскости (см. рис. 1.3.1), но не допускается наличие полюсов на мнимой оси и в правой полуплоскости, а также – кратных полюсов в начале координат.

Для примера 1.3.1 =0. Тем самым, свободное движение стремится к конечному значению y (t) = 0.

Передаточные функции линейных систем.

Передаточная функция линейной системы определяется как отношение преобразования Лапласа выходной переменной к преобразованию Лапласа входной переменной при условии, что все начальные значения равны нулю.

Передаточная функция существует только для линейных стационарных (с постоянными параметрами) систем и однозначно описывает динамическую связь между выходными и входными переменными.

Передаточная функция системы (2.1.3) получается, если в исходном уравнении (1.3.5) все начальные значения положить равными нулю

Bs 2 Y (s) + CsY (s) + DY (s) = X (s). (1.3.15)

Отсюда находим передаточную функцию

(1.3.16)

Пример 1.3.2. Передаточная функция RC цепи, изображенной на рис. 1.3.2, получается путем записи в операторной форме уравнений Кирхгофа для напряжений

U 1(s) = [ R +1/ Cs ] I (s), (1.3.17)

U 2(s) = I (s) / Cs.

 
 

 

 


Рис. 1.3.2

Тогда из (1.3.17) следует, что

, (1.3.18)

где t = RC есть постоянная времени цепи.

Пример 1.3.3. Пусть на вход цепи, изображенной на рис. 1.3.1, подано ступенчатое напряжение c амплитудой U 0 q (t), где q (t) – функция Хевисайда. Как будет изменяться напряжение на выходе цепи?

Так как U 1(s) = U 0/ s (см. таблицу 1.3.1), то согласно (1.3.18)

U 2(s) = U 1(s) = U 0 = U 0[ ].

В результате обратного преобразования Лапласа получим

u 2(t) = U 0 [1– exp(– t / t)]. (1.3.19)

Рассмотрим теперь поведение системы высокого порядка и найдем ее реакцию на входной сигнал после затухания собственного (свободного) движения.

Пример 1.3.4. Пусть дифференциальное уравнение движения системы имеет вид

y (n) + q n-1 y (n-1) +…+ q 0 y = p n-1 x (n-1) + p n-2 x (n-2) +…+ p 0 x, (1.3.20)

где y (t) есть реакция системы, а x (t) – возмущающая функция.

Если все начальные значения равны нулю, то вместо дифференциального уравнения (1.3.20) системы запишем его образ по Лапласу

s n Y (s) + q n-1 s n-1 Y (s) +…+ q 0 = (1.3.21)

= p n-1 s n-1 X (s) + p n-2 s n-2 X (s) +…+ p 0 X (s).

Тогда реакция системы состоит из свободного движения, определяемого начальными условиями, и вынужденного движения, обусловленного входным возмущением

Y (s) = , (1.3.22)







Дата добавления: 2015-09-19; просмотров: 493. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия