Студопедия — Непрерывность вещественных чисел
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывность вещественных чисел






15. Пусть X и Y – два множества, состоящие из вещественных чисел. Тогда, если для любых чисел и выполняется неравенство , то существует хотя бы одно число c, такое, что для любых чисел x и y выполняются неравенства

.

Следует заметить, что свойством непрерывности обладает множество всех вещественных чисел, но им не обладает множество только рациональных чисел. Действительно, пусть множество X состоит из рациональных чисел x, для которых выполняется неравенство , а множество Y состоит из рациональных чисел y, для которых выполняется неравенство . Тогда, очевидно, для любого числа и любого числа выполняется неравенство . Однако, не существует рационального числа c такого, чтобы выполнялись неравенства . В самом деле, таким числом могло бы быть только , которое, но оно не является рациональным.

 

Теперь окончательно будем считать, что вещественные числа представляют собой множество элементов, обладающих свойствами . Такое определение вещественных чисел называется аксиоматическим, а свойства аксиомами вещественных чисел.

В дальнейшем нам придется иметь дело с различными множествами вещественных чисел. Всюду, где это не может привести к неточности, для краткости вещественные числа будем называть просто числами.

Если – произвольные числа, то запись означает, что число x максимальное (минимальное) из чисел .

Приведем наиболее употребляемые числовые множества. Пусть и – два числа, причем . Будем использовать следующие обозначения:

 

- отрезок;

- интервал;

; - полуинтервалы;

; - лучи;

; - лучи.

R = - множество вещественных чисел

Все эти множества будем называють промежутками и обозначать X. Промежутки , , и называются конечными; и – их концы. Остальные промежутки называются бесконечными.

Интервал отличается от отрезка лишь тем, что ему не принадлежат концы и . Это отличие играет существенную роль во многих вопросах математического анализа. Кроме того, интервал не содержит ни наибольшего, ни наименьшего числа, в то время как в отрезке такими числами являются соответственно и . Примером промежутка является - окрестность точки ,это множество , где некоторое положительное число.

 

Определение. Множество называется ограниченным сверху (снизу), если существует число М такое, что для любого выполняется неравенство .

Число в этом случае называется верхней (нижней) гранью множества. Множество, ограниченное и сверху и снизу, называется ограниченным.

Например, любой конечный промежуток (, , , ) ограничен,

интервал есть множество, ограниченное снизу, но не ограниченное сверху, а интервал есть множество, не ограниченное ни сверху, ни снизу.







Дата добавления: 2015-08-12; просмотров: 567. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия