Студопедия — Дисперсные системы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дисперсные системы






Дисперсной называется двух или многофазная, т.е. гетерогенная система, в которой, по крайней мере, одна из фаз представлена очень маленькими частицами, размеры которых тем не менее заметно превосходят молекулярные. Частицы раздробленного вещества при этом называются дисперсной фазой, а гомогенная фаза, в которой они распределены (растворитель), представляет собой дисперсионную среду.

Взависимости от агрегатного состояния дисперсной фазы и дисперсионной среды системы подразделяют:

  Дисперсная фаза
Дисперсионная среда Т Ж Г
Т Твердые растворы некоторые природные минералы, породы, почвы твердые пены (пенобетон, пемза)
Ж Высокодисперсные: 1 Золи(малая конц, частицы обособлены) 2 Гели (частицы агрегируют и образуют связно дисперсную систему) Грубодисперные сист: 1 суспензии (малоконц) 2 пасты (высококонц) Эмульсии (косметические крема, майонез(обратная в/м), молоко (прямая м/в) пены
Г Пыль, смог туман

 

Дисперсные системы различаются по величине частиц раздробленного вещества, или, как говорят, по степени дисперсности. Различают грубодисперсные и коллоидно-дисперсные системы. В истинных растворах размер частиц доведен до размеров молекул или ионов. В них нет поверхности раздела между составляющими компонентами, т.е. растворителем и растворенным веществом. Истинные растворы агрегативно устойчивы.

Коллоидные системы условно делятся на лиофобные и лиофильные. Термодинамически устойчивые системы, образующиеся при самопроизвольном диспергировании одной из фаз, называются лиофильными. Самопроизвольному диспергированию способствует усиление взаимодействия дисперсной фазы с дисперсионной средой. Примерами лиофильных коллоидных систем могут служить растворы мыл и других поверхностно-активных веществ. К ним также относят растворы белков и других высокомолекулярных соединений.

Основным свойством лиофобных систем является их термодинамическая неравновесность. Самопроизвольно они не образуются. Получение их требует затраты внешней энергии – механической (растирание), химической (проведение химических реакций), электрической (распыление под действием электрического тока).

Существуют две группы методов получения коллоидных систем. Методы, основанные на раздроблении крупных частиц на более мелкие, получили название методов диспергирования. Методы, связанные с агрегацией молекул или ионов в более крупные частицы, называются конденсационными.

Важное условие для получения устойчивой коллоидной системы – присутствие стабилизаторов, т.е. веществ, которые, адсорбируясь на поверхности коллоидных частиц, создавали бы достаточно интенсивное взаимодействие между поверхностью и окружающей средой (растворителем).

Однако во всех этих случаях коллоидные системы получаются тогда, когда растворимость дисперсной фазы ничтожна мала. При несоблюдении этого условия возможно образование молекулярных растворов. Кроме того, необходимо, чтобы между частицами и средой существовало взаимодействие, препятствующее связыванию частиц друг и другом.

Строение структурной единицы лиофобных коллоидов - мицеллы - может быть показано лишь схематически, поскольку мицелла не имеет определенного состава. Рассмотрим строение коллоидной мицеллы на примере гидрозоля иодида серебра, получаемого взаимодействием разбавленных растворов нитрата серебра и иодида калия:

Коллоидная мицелла золя иодида серебра (см. рис. 1) образована микрокристаллом иодида серебра, который способен к избирательной адсорбции из окружающей среды катионов Аg+ или иодид-ионов. Если реакция проводится в избытке иодида калия, то ядро будет адсорбировать иодид-ионы при избытке нитрата серебра микрокристапл адсорбирует ионы Аg+. В результате этого микрокристалл приобретает отрицательный либо положительный заряд; ионы, сообщающие ему этот заряд, называются потенциалопределяющими,а сам заряженный кристалл - ядром мицеллы.

Из растворов на поверхности коллоидных частиц адсорбируются ионы близкие по своей природе к составу ядраправило Липатова.

Заряженное ядро притягивает из раствора ионы с противоположным зарядом - противоионы;на поверхности раздела фаз образуется двойной электрический слой. Некоторая часть противоионов адсорбируется на поверхности ядра, образуя т.н. адсорбционный спой противоионов,ядро вместе с адсорбированными на нем противоионами называют коллоидной частицей или гранулой Остальные противоионы, число которых определяется, исходя из правила электронейтральности мицеллы, составляют диффузный слой противоионов:противоионы адсорбционного и диффузного слоев находятся в состоянии динамического равновесия адсорбции-десорбции

Схематически мицелла золя иодида серебра, полученного в избытке иодида калия (потенциалопределяющие ионы - анионы Г. противоионы - ионы К") может быть изображена следующим образом

При получении золя иодида серебра в избытке нитрата серебра коллоидные частицы будут иметь положительный заряд;

Рис. 1. Строение коллоидной мицеллы.

 

Коагуляция и седиментация.

Частицы дисперсной фазы одновременно испытывают действие силы земного притяжения и архимедовой силы: в зависимости от соотношения плотностей дисперсионной среды и дисперсной фазы равнодействующая этих сил будет вынуждать частицы к оседанию либо всплытию. Процесс оседания либо всплытия коллоидных частиц в золе называется седиментацией. Однако седиментации всегда противодействует другой процесс, стремящийся к равномерному распределению коллоидных частиц по всему объему раствора – диффузия,осуществляемая под действием броуновского движения частиц Соотношение между этими двумя процессами определяет кинетическую устойчивость золей – способность коллоидных частиц удерживаться во взвешенном состоянии, не подвергаясь седиментации

Наличие электростатического и адсорбционно-сольватного барьера, препятствующих агрегации (соединению) частиц, обеспечивают агрегативную устойчивость лиофобным коллоидным системам, т.е. такие системы не изменяются заметно в течение длительного времени (иногда десятилетиями), несмотря на термодинамическую неустойчивость.

Так как лиофобные дисперсные системы являются термодинамически неравновесными, вних могут идти процессы укрупнения частиц и соответственно уменьшения межфазной поверхности. Наиболее характерный и общий для дисперсных систем путь перехода к равновесному состоянию – коагуляция, т.е. слипание частиц дисперсной фазы. Часто коагуляция сопровождается появлением мути, изменением окраски коллоидных растворов, образованием осадка (явная коагуляция). Когда происходит укрупнение частиц без видимых внешних изменений, говорят о скрытой коагуляции.

Коагуляция может происходить при действии на систему различных факторов: механическое воздействие (перемешивание или встряхивание), резкое охлаждение или нагревание, пропускание электрического тока. Иногда коагуляция может произойти в результате «старения» или химических изменений, происходящих в золе.

Добавление растворов электролитов также вызывает коагуляцию лиофобных золей. При этом коагулирующее действие оказывает один из ионов электролита: либо катион, либо анион.

Порогом коагуляции называется минимальная концентрация электролита, вызывающая коагуляцию.

Коагулирующий ион несет заряд, противоположный заряду коллоидной частицы, при этом порог коагуляции тем меньше, чем больше заряд (валентность) коагулирующего иона – правило Шульце-Гарди.

При добавлении раствора электролита к золю противоионы нейтрализуют заряд на поверхности коллоидной частицы (происходит сжатие ДЭС), что позволяет частицам золя легче приближаться друг к другу, и это воздействие тем сильнее, чем больший заряд несет противоион.

При добавлении некоторых веществ нередко наблюдается повышение устойчивости лиофобных золей к коагулирующему действию электролитов. Такое стабилизирующее действие на дисперсные системы называется коллоидной защитой. Защитными свойствами обладают белковые вещества (желатин, альбумины, казеин), полисахариды (крахмал, декстрин), некоторые поверхностно-активные вещества. Если, например, к золю гидроксида железа (III) добавить некоторое количество желатина, то для коагуляции такого золя требуется значительно больше электролита, чем для коагуляции незащищенного золя. Коллоидную защиту объясняют адсорбцией стабилизаторов на поверхности частиц дисперсной фазы и образованием слоя.

 

Оптические свойства коллоидных систем

Особые оптические свойства коллоидных растворов обусловлены их главными особенностями дисперсностью и гетерогенностью. На оптические свойства дисперсных систем в значительной степени влияют размер и форма частиц. Прохождение света через коллоидный раствор сопровождается такими явлениями, как поглощение, отражение, преломление и рассеяние света Преобладание какого-либо из этих явлений определяется соотношением между размером частиц дисперсной о>азы и длиной волны падающего света В грубодислерсных системах в основном наблюдается отражение света от поверхности частиц В коллоидных растворах размеры частиц сравнимы с длиной волны видимого света, что предопределяет рассеяние света за счет дифракции световых волн.

Светорассеяние в коллоидных растворах проявляется в виде опалесценции -матового свечения (обычно гопубоватых оттенков), которое хорошо заметно на темном фоне при боковом освещении золя. Причиной опалесценции является рассеяние света на коллоидных частицах за счет дифракции. С опапесценцией связано характерное для коллоидных систем явление - эффект Тиндаля: при пропускании пучка света через коллоидный раствор с направлений, перпендикулярных пучу, наблюдается образование в растворе светящегося конуса.

Цель работы:

Получить золь гидроксида железа

Ознакомиться с коагуляцией гидрофобного золя электролитами

Реактивы:

2%-ный раствор FeCl3

растворы электролитов: KCl - 1 н, K2SO4 - 0,01 н, K3[Fe(CN)6] – 0,001 н

вода дистиллированная.

Оборудование и посуда:

термостойкий стакан на 250 мл

штатив с 12-ю пробирками

пипетки на 5 и 10 мл

электроплитка







Дата добавления: 2015-10-02; просмотров: 929. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия