Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Що з названого є об’єктом сумісної власності подружжя!


Дата добавления: 2015-10-12; просмотров: 931



Рассматривая выражения , , , мы предполагали, что последовательности и имеют конечные пределы и .

Выясним, каковы будут результаты, когда пределы последовательностей и (или один из них) бесконечны или когда предел знаменателя (в случае частного) будет равен нулю.

1. Пусть предел конечен, а . Тогда

.

Действительно, , так как величина бесконечно малая (обратная бесконечно большой ).

2. Если (конечный или бесконечный), а

, то .

В самом деле,

,

так как обратная величина стремится к нулю.

3. Если , а предел конечен, то (так как обратное отношение ).

4. Пусть . В этом случае предел частного может иметь различные значения или даже вовсе не существовать, это зависит от частного закона изменения переменных. Проиллюстрируем сказанное примерами. Пусть

, ; , .

Тогда . Если же положить

, , то .

При , .

Пусть , , тогда отношение не имеет предела.

Подводя итог рассмотренному, можно утверждать, что знание пределов и не позволяет судить о пределе их отношения; необходимо знать закон изменения переменных и непосредственно исследовать отношение . Чтобы характеризовать эту особенность, говорят, что выражение представляет неопределенность вида .

5. Подобное предыдущему обстоятельство возникает, когда , . Проиллюстрируем этот факт примерами:

, , ;

, , ;

, , ;

, , не имеет предела.

В этом случае говорят, что выражение является неопределенностью вида .

6. Рассмотрим далее произведение . Если существует отличный от нуля предел (конечный или бесконечный), а , то , так как обратная величина есть бесконечно малая (первый множитель имеет конечный предел, а второй стремится к нулю).

7. Если , а , то сталкиваемся с ситуацией, которая рассматривалась в пп. 4,5.

В самом деле, рассмотрим примеры:

, , ;

, , ;

, , ;

, , не имеет предела.

Рассмотренные примеры подтверждают тот факт, что выражение есть неопределенность вида .

8. Можно показать, что если , а имеет конечный предел, то .

9. Пусть и стремятся к бесконечности разных знаков. Этот случай также оказывается особым; различные возможности проиллюстрируем примерами:

, , ;

, , ;

, , ;

, , .

В силу рассмотренного говорят, что при , выражение является неопределенностью вида .

В соответствии с рассмотренным выше, мы можем сделать следующий вывод. При определении пределов суммы, произведения и частного по пределам последовательностей и , из которых они образуются, это невозможно сделать в случаях возникновения неопределенностей

, , , .

Нужно непосредственно исследовать выражение, учитывая закон изменения последовательностей. Это исследование называется раскрытием неопределенности.


<== предыдущая лекция | следующая лекция ==>
Дубильні речовини | Що з названого є об’єктом сумісної власності подружжя!
<== 1 ==> |
Studopedia.info - Студопедия - 2014-2025 год . (0.206 сек.) російська версія | українська версія

Генерация страницы за: 0.206 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7