Головна сторінка Випадкова сторінка КАТЕГОРІЇ: АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія |
Зрошування та МТЗ для тепличного господарства.Дата добавления: 2015-10-15; просмотров: 615
На принципе отдачи основано реактивное движение. В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью U относительно ракеты. Обозначим массу выброшенных газов через m, а массу ракеты после истечения газов через M. Тогда для замкнутой системы «ракета + газы» можно записать на основании закона сохранения импульса (по аналогии с задачей о выстреле из орудия): , V= - где V – скорость ракеты после истечения газов. Здесь предполагалось, что начальная скорость ракеты равнялась нулю. Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно. На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость. Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью V. В течение малого промежутка времени Δt из ракеты будет выброшена некоторая порция газа с относительной скоростью U. Ракета в момент t + Δt будет иметь скорость а ее масса станет равной M + ΔM, где ΔM < 0 (рис. 1.17.3 (2)). Масса выброшенных газов будет, очевидно, равна –ΔM > 0. Скорость газов в инерциальной системе OX будет равна V+U. Применим закон сохранения импульса. В момент времени t + Δt импульс ракеты равен ( )( M + ΔM)а импульс испущенных газов равен В момент времени t импульс всей системы был равен MV. Предполагая систему «ракета + газы» замкнутой, можно записать: Величиной можно пренебречь, так как |ΔM| << M. Разделив обе части последнего соотношения на Δt и перейдя к пределу при Δt → 0, получим
Величина есть расход топлива в единицу времени. Величина называется реактивной силой тяги Fp Реактивная сила тяги действует на ракету со стороны истекающих газов, она направлена в сторону, противоположную относительной скорости. Соотношение Ma=Fp=- U выражает второй закон Ньютона для тела переменной массы. Если газы выбрасываются из сопла ракеты строго назад (рис. 1.17.3), то в скалярной форме это соотношение принимает вид:
где u – модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу для конечной скорости υ ракеты: где – отношение началь ной и конечной масс ракеты. Эта формула называется формулой Циолковского. Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости υ = υ1 = 7,9·103 м/с при u = 3·103 м/с (скорости истечения газов при сгорании топлива бывают порядка 2–4 км/с) стартовая масса одноступенчатой ракеты должна примерно в 14 раз превышать конечную массу. Для достижения конечной скорости υ = 4u отношение должно быть = 50. Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет, когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.
Реактивное движение Знание закона сохранения импульса во многих случаях дает возможность выполнить расчеты результата взаимодействия тел, когда значения действующих сил неизвестны. Рассмотрим в качестве примера действие реактивного двигателя. При сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла ракеты со скоростью (рис. 61). Ракета и выбрасываемые ее двигателем газы взаимодействуют между собой. На основании закона сохранения импульса при отсутствии внешних сил сумма векторов импульсов взаимодействующих тел остается постоянной. До начала работы двигателей импульс ракеты и горючего был равен нулю; следовательно, и после включения двигателей сумма векторов импульса ракеты и импульса истекающих газов равна нулю: , (17.1) где — масса ракеты; — скорость ракеты; — масса выброшенных газов; — скорость истечения газов. , (17.2) а для модуля скорости ракеты имеем . (17.3) Эта формула применима для вычисления модуля скорости ракеты при условии небольшого изменения массы ракеты в результате работы ее двигателей. Реактивный двигатель обладает многими замечательными особенностями, но главная из них заключается в следующем. Автомобилю для движения, кроме двигателя, нужна еще и дорога, с которой могли бы взаимодействовать колеса, теплоходу — вода, а самолету — воздух. Ракете для движения не нужны ни земля, ни вода, ни воздух, так как она движется в результате взаимодействия с газами, образующимися при сгорании топлива. Поэтому ракета может двигаться в безвоздушном космическом пространстве. К. Э. Циолковский — основоположник теории космических полетов. Научное доказательство возможности использования ракеты для полетов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы было дано впервые русским ученым и изобретателем Константином Эдуардовичем Циолковским (1857—1935). В его труде «Исследование мировых пространств реактивными приборами», опубликованном в 1903 г., была выведена формула, устанавливающая связь между скоростью ракеты, скоростью истечения газов, массой ракеты и массой горючего. Циолковский теоретически обосновал возможность создания ракеты, способной разогнаться до скорости 8 км/с и улететь в космическое пространство. В качестве горючего для такой ракеты он предлагал использовать жидкий водород, а в качестве окислителя — жидкий кислород. Конструкция жидкостной ракеты, по К. Э. Циолковскому, представлена на рисунке 62. В 1929 г. К. Э. Циолковский разработал идею создания «космических ракетных поездов». Теоретические работы К. Э. Циолковского более чем на полвека опередили уровень развития техники. Эти работы послужили основой для создания современной теоретической и практической космонавтики. Успехи СССР в освоении космического пространства. Идеи К. Э. Циолковского о создании «космических ракетных поездов» — многоступенчатых ракет — были осуществлены советскими учеными и техниками под руководством выдающегося советского ученого, академика Сергея Павловича Королева (1907—1966). Первый в мире искусственный спутник Земли был с помощью ракеты запущен в Советском Союзе 4 октября 1957 г. 12 апреля 1961 г. гражданин Советского Союза Юрий Алексеевич Гагарин(1934—1968) на космическом корабле «Восток» совершил первый в мире полет в космическом пространстве. Советские космические ракеты доставили на Землю образцы грунта с поверхности Луны, осуществили мягкую посадку автоматических межпланетных станций на поверхность Венеры и Марса, вывели на околоземную орбиту долговременные орбитальные станции. Полеты космических кораблей с космонавтами на борту, автоматических межпланетных станций и искусственных спутников Земли используются как для научных исследований в околоземном и межпланетном пространстве, так и для решения практических задач народного хозяйства. С помощью спутников и автоматических межпланетных станций изучены состав и строение атмосферы Земли на больших высотах, химический состав и физические свойства атмосферы Венеры и Марса, получены изображения поверхности Луны, Венеры и Марса. Спутники связи «Молния» через наземные станции «Орбита» осуществляют трансляцию телевизионных программ и телефонную связь на любых расстояниях в пределах нашей страны. Метеорологические спутники «Метеор» используются для исследования процессов, происходящих в земной атмосфере, и составления прогнозов погоды. Специальные спутники помогают морским судам и самолетам определять свои координаты. Исследования поверхности материков и океанов, выполняемые космонавтами при полетах на орбитальных станциях, позволяют оценить и уточнить природные ресурсы в различных районах земного шара.
МБОУ СОШ с. Кривандино
Реферат
На тему: «Реактивное движение».
Подготовил: Айкашев Игорь Учитель: Миронова И.А.
|