Головна сторінка Випадкова сторінка КАТЕГОРІЇ: АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія |
Законодавство про правоохоронні органи. Джерела дисципліни.Дата добавления: 2015-03-11; просмотров: 633
Показатели, используемые для анализа качества прогноза разделить на три группы: 1. Абсолютные показатели точности прогнозов. К ним относятся такие показатели, которые позволяют количественно определить величину ошибки прогноза в единицах измерения прогнозируемого объекта или в процентах: - абсолютная ошибка: . (17.1) - средняя абсолютная ошибка: . (17.2) - среднеквадратическая ошибка: . (17.3) Следует отметить, что существует связь среднего абсолютного отклонения со стандартным отклонением. Для большого класса статистических распределений значение стандартного отклонения несколько больше значения среднего абсолютного отклонения и строго пропорционально ему. Константа пропорциональности для различных распределений колеблется между 1,2 и 1,3. Чаще всего на практике берется 1,25, поэтому: . (17.4) Недостатком рассматриваемых показателей является то, что значение этих характеристик существенного зависит от масштаба измерения уровней исследуемых явлений. Абсолютная ошибка может быть выражена в процентах относительно фактических значений показателя следующим образом. - относительная ошибка: . (17.5) - средняя относительная ошибка: . (17.6) Данный показатель используется при сравнении точности прогнозов разнородных объектов прогнозирования, поскольку этот показатель характеризует относительную точность прогноза. Типичные значения показателя для среднесрочных прогнозов и их интерпретация представлены в таблице 17.1
Таблица 17.1 - Типичные значения показателя для среднесрочных прогнозов
Подобный подход к оценке точности прогноза возможен только при условии, когда период упреждения уже окончился и имеются фактические данные о прогнозируемом показателе, а также при ретроспективном прогнозировании. В последнем случае имеющаяся информация делится на две части, одна из которых охватывает более ранние данные, а другая - более поздние. С помощью данных первой группы оцениваются параметры модели прогноза, а данные второй группы рассматриваются как фактические данные прогнозируемого показателя. Полученная ретроспективно ошибка прогноза в какой-то мере характеризует точность применяемой методики прогнозирования.
2. Сравнительные показатели точности прогнозов. Эти показатели основаны на сравнении ошибки рассматриваемого прогноза с эталонными прогнозами определенного вида. Один из таких показателей (К) может быть в общем виде представлен следующим образом: , (17.7) где рt* - прогнозируемое значение величины эталонного прогноза. В качестве эталонного прогноза может быть выбрана простая экстраполяция, постоянный темп прироста и т.д. Частным случаем показателей такого типа является коэффициент несоответствия (КН), в котором pt*=0 для всех t: . (17.8) КН=0 в случае несовершенного прогноза и КН=1, когда прогноз имеет ту же ошибку, что и наивная экстраполяция неизменности. КН не имеет верхней конечной границы. Можно построить различные модификации коэффициента несоответствия: - коэффициент несоответствия КН1, исчисляемый как отношение среднеквадратической ошибки прогноза к той же ошибке, которая имела бы место, если принять в качестве прогноза для каждого года среднее значение переменной за весь период: . (17.9) Если КН1>1, то прогноз на уровне среднего значения дал бы лучшие результаты, чем имеющийся прогноз. - коэффициент расхождения V, исчисляемый как отношение среднеквадратической ошибки прогноза к той же ошибке, которая имела бы место, если принять в качестве прогноза для каждого года экстраполированное значение по аналитическому тренду, то есть . (17.10) Если V>1, то прогноз методом простой экстраполяции дает лучший результат. К сравнительным показателям следует отнести и коэффициент корреляции между прогнозируемыми т фактическими значениями переменной - R.
|