Студопедия — Определение скоростей и ускорений точек тела
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение скоростей и ускорений точек тела






Скорость любой точки В плоской фигуры равна геометрической сумме двух скоростей: скорости точки А, принятой в качестве полюса, и скорости точки В при вращении тела вокруг полюса (рис. 3.2, а)

, (3.4)

где – вектор угловой скорости, введенный так же, как и при рассмотрении вращения тела вокруг неподвижной оси (здесь этот вектор располагается на оси, проведенной через полюс перпендикулярно плоскости движения); – радиус-вектор точки М, проведенный из точки А. Вращательная составляющая скорости точки перпендикулярна отрезку AM и направлена в сторону вращения тела, ее модуль

(3.5)

Модуль и направление скорости находят построением соответствующего параллелограмма (см. рис. 3.2, а).

Еще один способ определения скоростей точек тела при плоскопараллельном движении основан на использовании теоремы о равенстве проекций скоростей двух точек тела: «Проекции скоростей двух точек тела на прямую, соединяющую эти точки, равны друг другу». Заметим, что эта теорема справедлива для любого вида движения абсолютно твердого тела и позволяет легко находить скорость точки тела, если известны направление скорости этой точки, а также направление и величина скорости какой-либо другой точки этого же тела.

Ускорение любой точки В плоской фигуры равно геометрической сумме ускорения точки А, принятой в качестве полюса, и ускорения, которое точка приобретает при вращении тела вокруг полюса (рис. 3.2, б):

, (3.6)

где – вектор углового ускорения, введенный так же, как и при рассмотрении вращения тела вокруг неподвижной оси. Вектор вращательной составляющей ускорения направлен перпендикулярно отрезку AB в сторону углового ускорения, т.е. в сторону вращения, если оно ускоренное, и в противоположную сторону, если замедленное. Вектор осестремительной составляющей ускорения всегда направлен от точки М к полюсу A. Запишем модули этих векторов соответственно

. (3.7)

Определять полный вектор ускорения точки М целесообразно не геометрически, а аналитически с помощью разложения слагаемых векторов на оси выбранной системы координат.

 







Дата добавления: 2014-10-29; просмотров: 853. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия