Студопедия — Классическая нормальная линейная регрессионная модель
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классическая нормальная линейная регрессионная модель






Рассмотрим вопрос о качестве МНК-оценок (4) и (5). Эти оценки обла­дают многими хорошими свойствами, если величины в уравнении (1) удовлетворяют следующим условиям.

  • X – детерминированная величина;
  • e1, …, e n – независимые нормальные одинаково распределенные случайные величины: e i ~ N(0, s2 ), M(e i e j)=0 при i ¹ j.

При выполнении этих условий соотношение (1) называется классической нор­мальной линейной регрессионной моделью.

Справедлива теорема Гаусса-Маркова: В условиях классической нормальной линейной регрессионной модели* оценки (4) и (5) имеют наименьшую дисперсию в классе всех линейных несмещенных оценок.

Оценки, имеющие наименьшую дисперсию, называются эффективными. Таким образом, по теореме Гаусса-Маркова в условиях классической нормальной регрессионной модели МНК-оценки параметров парной линейной регрессии являются эффективными в классе всех линейных несмещенных оценок.

Упрощенная интерпретация теоремы Гаусса-Маркова: в среднем оценки (4) и (5) меньше, чем любые другие линейные несмещенные оценки, полученные по данным наблюдениям, отклоняются от истинных (но неизвестных) значений параметров m и b.

Кроме того, можно доказать (см., например, [5]), что в условиях классической нормальной регрессионной модели оценки (4) и (5) обладают следующими свойствами#:

1. – состоятельные оценки параметров m и b.

2. – несмещенные оценки параметров m и b ().

3. Для дисперсии оценки справедлива формула:

(8)

4. являются нормальными случайными величинами.

5. Остаточная сумма квадратов Qe независима от , а статистика

(8а)

имеет распределение хи-квадрат с числом степеней свободы n -2 (c2 n -2).

6. Cтатистика s 2:

(8б)

является несмещенной оценкой дисперсии возмущений (Ms 2=s2).







Дата добавления: 2014-11-10; просмотров: 3292. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия