Студопедия — Доказательство. Достаточно доказать, что для нормы, определенной соотношением ||x||=(x,x)1/2 справедливы аксиомы 1-3 из определения нормированного пространства
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. Достаточно доказать, что для нормы, определенной соотношением ||x||=(x,x)1/2 справедливы аксиомы 1-3 из определения нормированного пространства






Достаточно доказать, что для нормы, определенной соотношением ||x||=(x,x)1/2 справедливы аксиомы 1-3 из определения нормированного пространства. Справедливость для нормы аксиомы 1 сразу вытекает из аксиомы 4 скалярного произведения. Справедливость для нормы аксиомы 2 почти непосредственно вытекает из аксиом 1 и 3 скалярного произведения. Остается убедиться в справедливости для нормы аксиомы 3, то есть неравенства ||x+y||≤||x||+||y||. Будем опираться на неравенство Коши-Буняковского (x,y)2≤(x,x)(y,y), которое перепишем в виде |(x,y)|≤(x,x)1/2(y,y)1/2. С помощью последнего неравенства, аксиом 1-4 скалярного произведения и определения нормы получим ||x+y||=(x+y,x+y)1/2=((x,x)+2(x,y)+(y,y))1/2≤((x,x)+(x,x)1/2(y,y)1/2+(y,y))1/2=([(x,x)1/2+(y,y)1/2]2)1/2=(x,x)1/2+(y,y)1/2=||x||+||y||. Теорема доказана.

Следствие. Во всяком евклидовом пространстве с нормой элементов, определяемой соотношением ||x||=(x,x)1/2, для любых двух элементов x и y справедливо неравенство треугольника ||x+y||≤||x||+||y||.

В любом вещественном евклидовом пространстве можно ввести понятие угла между двумя произвольными элементами x и y этого пространства. Угол ϕ между элементами x и y тот (изменяющийся от 0 до π) угол, косинус которого определяется соотношение cosϕ=(x,y)/||x|y||=(x,y)/(x,x)1/2(y,y)1/2 (данное определение угла корректно, ибо в силу неравенства Коши-Буняковского дробь, стоящая в правой части последнего равенства, по модулю не превосходит единицу).

Определение. Два произвольных элемента x и y евклидова пространства E называются ортогональными, если скалярное произведение этих элементов (x,y) равно нулю (в этом случае косинус угла ϕ между элементами x и y будет равен нулю).

Назовем сумму x+y двух ортогональных элементов x и y гипотенузой прямоугольного треугольника, построенного на элементах x и y.

Во всяком евклидовом пространстве справедлива теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. Поскольку x и y ортогональны и (x,y)=0, то в силу аксиом и определения нормы ||x+y||2=(x+y,x+y)=(x,x)+2(x,y)+(y,y)=(x,x)+(y,y)=||x||2+||y||2.

Запишем норму, неравенство Коши-Буняковского и неравенство треугольника для конкретных евклидовых пространств.

1) В евклидовом пространстве всех свободных векторов с обычным определением скалярного произведения норма вектора a совпадает с его длиной |a|, неравенство Коши-Буняковского приводится к виду (a,b)2≤|a|2|b|2, а неравенство треугольника – к виду |a+b|≤|a|+|b|

2) В евклидовом пространстве C[a,b] всех функций x=x(t), определенныx и непрерывных на сегменте a≤t≤b со скалярным произведением, определенным как интеграл (в пределах от a до b) от произведений функций x(t) и y(t), норма элемента x=x(t) равна (∫bax2(t)dt)1/2, а неравенства Коши-Буняковского и треугольника имеют виду [∫bax(t)y(t)dt]2≤∫bax2(t)dt∫bay2(t)dt, (∫ba[x(t)+y(t)]2)1/2≤(∫bax2(t)dt)1/2+(∫bay2(t)dt)1/2

3) В евклидовом пространстве En упорядоченных совокупностей n вещественных чисел со скалярным произведением (x,y)=(x1y1+…+xnyn) норма любого элемента x=(x1, x2,…, xn) равна ||x||=(x21+x22+…+x2n)1/2, а неравенство Коши-Буняковского и треугольника имеют вид (x1y1+x2y2+…+xnyn)≤(x21+x22+…+x2n)(y21+y22+…+y2n, [(x1+y1)2+…+(xn+yn)2]1/2≤(x21+x22+…+x2n)1/2+(y21+y22+…+y2n)1/2.

 

 

  1. Ортонормированный базис в евклидовом пространстве. Теорема о существовании ортонормированного базиса. Процесс ортогонализации.

Определение. Будем говорить, что n элементов e1, e2,…, en n-мерного евклидова пространства Е образуют ортонормированный базис этого пространства, если эти элементы попарно ортогональны и норма каждого из этих элементов равна 1, то есть если

1, при i=k

(ei,ek)=

0, при i≠k

Для конкретности докажем, что такая система линейно независима. α1e1+…+αnen=0, умножим скалярно это равенство на ek (k от 1 до n). Мы получим αk=0 => e1, e2,…, en линейно независимы.

Теорема. Во всяком n-мерном евклидовом пространстве E существует ортонормированный базис.







Дата добавления: 2015-09-07; просмотров: 1430. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия