Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классы микропроцессорных комплексов





Рис. 5. Классы микропроцессорных комплексов.

1. Контроллер на базе персонального компьютера (PC based control). Это направление существенно развилось в последнее время, ввиду повышения надежности работы персональных компьютеров; наличия их модификаций в обычном и промышленном исполнении; их открытой архитектуры; легкости включения в них любых блоков ввода/вывода, выпускаемых рядом фирм; возможности использования уже наработанной широкой номенклатуры программного обеспечения (операционных систем реального времени, баз данных, пакетов прикладных программ контроля и управления). Основные сферы использования контроллеров на базе PC - специализированные системы автоматизации в медицине, в научных лабораториях, в средствах коммуникации, в промышленности для небольших достаточно замкнутых объектов. Общее число входов/выходов такого контроллера обычно не превосходит десятков, а выполняемыми функциями являются либо достаточно сложная обработка измерительной информации с расчетом нескольких управляющих команд, либо расчеты по специализированным формулам, аргументами которых являются измеряемые величины.

В общих терминах можно указать условия рациональной области применения контроллеров на базе PC в промышленности:

- при нескольких входах и выходах объекта надо производить большой объем вычислений за достаточно малый интервал времени (необходима большая вычислительная мощность);

- средства автоматизации работают в окружающей среде, не слишком отличающейся от условий работы обычных персональных компьютеров;

- нет необходимости в использовании жесткого малого времени цикла контроллера;

- реализуемые контроллером функции целесообразнее в силу их нестандартности программировать не на одном из специальных технологических языков, а на обычном языке программирования высокого уровня типа C++, Pascal;

- мощная поддержка работы операторов, реализуемая в обычных контроллерах: диагностика работы, устранение неисправности без остановки работы контроллера, модификация программного обеспечения во время работы системы автоматизации - не имеет большого значения для заданной конкретной задачи.

На рынке PC based control работает в России весьма успешно ряд зарубежных компаний: Octagon, Advantech, Analog Devices и др.

2. Локальный контроллер (PLC - Programmable Logic Controller). В настоящее время распространяются несколько типов локальных контроллеров:

- контроллер, встраиваемый в оборудование (агрегат, машину, прибор) и являющийся его неотъемлемой частью. Примеры такого "интеллектуального" оборудования: станки с программным управлением, автомашинисты, современные аналитические приборы:

- автономный контроллер, реализующий функции контроля и управления небольшим, достаточно изолированным технологическим узлом (объектом).

Контроллеры, обычно, могут иметь десятки входов/выходов от датчиков и исполнительных механизмов: их вычислительная мощность может быть разной (малые, средние и большие контроллеры): они реализуют типовые функции обработки измерительной информации, логического управления, регулирования. Многие из них имеют один или несколько физических портов для передачи информации в другие средства/системы автоматизации.

Примеры продукций зарубежных фирм, относящихся к этому классу программно-технических комплексов (ПТК), приведены ниже

• General Electric Fanuc Automation выпускает контроллеры серии 90 Micro;

• Rockwell Automation выпускает контроллеры серии Micrologix 1000;

• Schneider Electric выпускает контроллеры серии TSX Nano;

• Siemens выпускает контроллеры серии С7-620.

3. Сетевой комплекс контроллеров (PLC, Network). Этот класс ПТК является наиболее широко распространенным и внедряемым средством управления технологическими процессами во всех отраслях промышленности. Минимальный состав такого средства:

• ряд контроллеров;

• несколько дисплейных рабочих станций операторов;

• системная (промышленная) сеть, соединяющая контроллеры и рабочие станции между собой.

Контроллеры определенного сетевого комплекса имеют обычно ряд модификаций, отличающихся друг от друга мощностью, быстродействием, объемом памяти, возможностями резервирования, приспособлением к разным условиям окружающей среды, максимально возможным числом каналов входов и выходов. Это облегчает использование определенного сетевого комплекса для разных технологических объектов, поскольку позволяет наиболее точно подобрать контроллеры требуемых характеристик под разные отдельные узлы автоматизируемого агрегата и под разные функции контроля и управления.

Рассматриваемые сетевые комплексы контроллеров имеют верхние ограничения как по сложности выполняемых функций (обычно, типовые функции измерения, контроля, учета, регулирования, блокировки), так и по объему самого автоматизируемого объекта, в пределах десятков тысяч измеряемых и контролируемых величин (обычно, отдельный технологический агрегат, производственный участок).

Большинство работающих в СНГ зарубежных фирм поставляет сетевые комплексы контроллеров. Отметим, к примеру сетевые комплексы малых контроллеров (порядка сотен входов/выходов на контроллер):

• комплексы серий контроллеров DL 205, DL 305 фирмы Koyo Electronics;

• комплексы серий контроллеров TSX Micro фирмы Schneider Electric;

• комплексы серии контроллеров SLC-500 фирмы Rockwell Automation;

• комплексы серии контроллеров CQM1 фирмы Omron.

Примеры сетевых комплексов больших контроллеров (порядка тысяч входов/выходов на контроллер) возьмем из продукции этих же фирм·

• комплексы серии контроллеров DL 405 фирмы Коуо Electronics;

• комплексы серий контроллеров TSX Premium фирмы Schneider Electric;

• комплексы серии контроллеров PLC-5 фирмы Rockwell Automation;

• комплексы серии контроллеров С200 фирмы Omron.

4. Распределенные маломасштабные системы управления (DCS – Distributed Control Systems, Smaller Scale).

Этот класс микропроцессорных средств частично пересекается с классом сетевых комплексов контроллеров, но в среднем превосходит большинство сетевых комплексов контроллеров по мощности и/или гибкости структуры, а следовательно, и по объему и сложности выполняемых функций. В целом он еще имеет ряд ограничений по объему автоматизируемого производства и по реализуемым функциям.

Основные отличия данных средств от сетевых комплексов контроллеров заключаются в несколько большем разнообразии модификаций контроллеров, развитую многоуровневой сетевой структуре, в большей мощности центральных процессоров контроллеров, в широком использовании отдельных конструктивов удаленных блоков ввода/вывода, рассчитанных на работу в различных условиях окружающей среды; в более развитой и гибкой связи с полевыми приборами и с корпоративной сетью предприятия. Зачастую они имеют несколько уровней системных сетей, соединяющих контроллеры между собою и с рабочими станциями операторов (например, нижний уровень, используемый для связи контроллеров и рабочей станции отдельного компактно расположенного технологического узла и верхний уровень, реализующий связи средств управления отдельных узлов друг с другом и с рабочей станцией диспетчера всего автоматизируемого участка производства). В ряде случаев развитие сетевой структуры идет в направлении создания ряда полевых сетей, соединяющих отдельные контроллеры с удаленными от них блоками ввода/вывода и интеллектуальными приборами (датчиками и исполнительными устройствами). Такие достаточно простые и дешевые сети позволяют передавать информацию между контроллерами и полевыми интеллектуальными приборами в цифровом виде по одной витой паре, что резко сокращает длину кабельных сетей на предприятии и уменьшает влияние возможных помех, поскольку исключается передача низковольтной аналоговой информации на значительные расстояния.

В целом маломасштабные распределенные системы управления охватывают отдельные цеха и участки производства и, в дополнении к обычным функциям контроля и управления, часто могут реализовывать более сложные и объемные алгоритмы управления (например, задачи статической и динамической оптимизации работы автоматизируемого объекта). При этом сами сложные алгоритмы в зависимости от их объема и требуемой динамики выполнения реализуются либо в самих контроллерах, либо в вычислительных мощностях пультов операторов.

Следует отметить, что, используя нечеткость границ классификации ПТК и их изменчивость во времени, связанную с непрерывной модернизацией отдельных составляющих ПТК. некоторые фирмы, в рекламных целях, называют свои достаточно ограниченные по мощности и возможностям сетевые комплексы контроллеров распределенными системами управления.

Ряд распространяемых в СНГ зарубежными фирмами ПТК можно отнести к данному классу средств. Примеры маломасштабных распределенных систем:

• ControlLogix разработки фирмы Rockwell Automation;

• Simatic S7-400 разработки фирмы Siemens;

• TSX Quantum разработки фирмы Schneider Electric.

5. Полномасштабные распределенные системы управления (DCS, Full Scale).

Данный класс ПТК имеет все особенности вышеперечисленных классов микропроцессорных средств управления и дополнительно имеет ряд из перечисленных ниже свойств, влияющих на возможности полномасштабного использования этих средств на предприятиях:

a) Развитая сетевая структура.

- наличие всех трех уровней сетей (информационная, системная, полевая) с имеющимися вариантами сетей отдельных уровней;

- использование мощных системных сетей, позволяющих подсоединять к одной шине сотни узлов (контроллеров и пультов) и распределять эти узлы на значительные (многокилометровые) расстояния;

- высокие скорости основных сетей и поддержка ими приоритетной передачи важнейших сообщений/команд;

- широкое и проработанное в масштабах данной системы использование информационных сетей (обычно, сети Ethernet) для связи рабочих станций операторов друг с другом, для их связи с серверами баз данных, для взаимодействия данного ПТК с корпоративной сетью предприятия, для возможности построения необходимой иерархии управляющих центров (планирование, диспетчеризация, оперативное управление);

б) Широкий диапазон мощностей входящих в систему контроллеров.

- вариантность по числу обслуживаемых входов/выходов (от сотен до десятков тысяч опрашиваемых датчиков);

- наличие модификаций, различающихся мощностью основного микропроцессора, быстродействием, объемами памяти разного типа, возможностями резервирования, степенью защиты от неблагоприятных условий окружающей среды;

- возможность в некоторых мощных модификациях контроллеров реализовать многие современные высокоэффективные, но сложные и объемные алгоритмы контроля, диагностики, моделирования, управления.

в) Разнообразие вариантов блоков ввода/вывода.

- наличие встроенных в контроллер и удаленных блоков ввода/вывода, рассчитанных на практически любые типы датчиков и исполнительных механизмов;

- модификации удаленных блоков ввода/вывода для разнообразных условий промышленной окружающей среды;

- варианты «интеллектуальных» блоков ввода/вывода, реализующих, в том числе, простейшие алгоритмы контроля и управления;

г) Широта модификаций рабочих станций.

- возможный выбор вариантов рабочих станций по мощности и назначению: стационарные и переносные пульты операторов технологических процессов, диспетчерские рабочие станции, контролирующие рабочие станции руководящего персонала, инженерные станции;

- работа взаимодействующих рабочих станций управления в клиент/серверном режиме;

- конструктивное оформление пультов операторов с учетом эргономических требований.

д) Современность программного обеспечения системы.

- развитые сетевые SCADA-программы, имеющие модификации для различных уровней управления;

- набор технологических языков, обеспечивающих задачи контроля, логического управления, регулирования и имеющих мощные библиотеки типовых программных модулей, включающих в себя ряд эффективных современных модулей типа «Advance Control»;

- наличие в составе программного обеспечения системы ряда прикладных пакетов программ, реализующих функции эффективного управления отдельными агрегатами (многосвязное регулирование, нейрорегуляторы и регуляторы на нечеткой логике оптимизация и т. д.), функции диспетчерского управления участками производства (компьютерная поддержка принятия управленческих решений), функции технического учета и планирования производства в целом;

- пакет программ автоматизации проектирования и документирования системы автоматизации.

е) Развитость верхнего уровня управления производством.

- проработка средств хранения и обмена информацией с другими системами автоматизации разных уровней управления и разного назначения;

- наличие программных и технических средств построения ряда уровней управления производством: планирования, диспетчеризации, оперативного управления участками, динамического управления отдельными агрегатами;

- включение в комплекс ряда функций по обслуживанию производства (типа управления складами, обслуживания оборудования, контроля за движением материальных потоков).

Примеры фирм: АББ - Symphony; Honeywell - ТРС и PlantScape; Valmet - Damatic XDi; Yokogava -Centum CS, Foxboro - I/A Series, Emerson - DeltaV и др.

4. Промышленная локальная сеть. Обычно выделяют, по назначению и функциям коммуникации, двух видов:

- промышленные сети, связывающие контроллеры между собою и с рабочими станциями операторов,

- полевые каналы и сети, связывающие контроллеры с удаленными (выносными) блоками ввода/вывода и с интеллектуальными приборами.

Эти коммуникации не имеют четкой разделяющей их границы, некоторые сети могут использоваться для обоих указанных целей, поэтому они обычно объединяются общим наименованием - Fieldbus, что в буквальном переводе обозначает "полевая шина", а обычно в русском языке принято называть "промышленная сеть". Промышленную локальную сеть называют также промышленной шиной.

Шинаэто средство обеспечения взаимодействия близко расположенных объектов. Характерной особенностью шины как устройства является тот факт, что все взаимодействующие компоненты подключаются к шине одинаковым образом. Шины тем или иным образом присутствуют на всех уровнях автоматизации. В настоящее время наиболее распространены следующие топологии сетей.

1) Общая шина.

Рис. 6. Топология сети «Общая шина».

- возможно подключение / отключение устройств во время работы;

- опасность потери связи при одиночном обрыве;

- присутствие общего трафика во всей системе;

- широко используется для сильно распределенных объектов (дешевизна).

2) «Кольцо».

Рис. 7. Топология сети «Кольцо».

- хорошая пропускная способность;

- высокая стоимость;

- нерациональное использование сетевого трафика;

- потеря синхронизации всей сети в случае отказа хотя бы одного из узлов.

3) «Звезда».

Рис. 8. Топология сети «Звезда».

 

- дополнительная защита сети от выхода узлов из строя;

- опасность аварии при выходе из строя устройства связи;

- оптимизация трафика.

Промышленная сеть обладает рядом специфических особенностей, выделяющих ее в отдельный класс, отличный от информационных сетей:

- работа в режиме реального времени;

- необходимость предсказуемости времени передачи сообщений и гарантия их доставки по назначению;

- отсутствие передаваемых больших массивов информации;

- обязательная повышенная надежность передачи данных в промышленной среде (в частности, при электромагнитных помехах);

- предпочтительная работа на недорогих физических средах;

- возможность больших расстояний между узлами сети;

- упрочненная механическая конструкция аппаратуры сети.

Если выделить из промышленных сетей подкласс чисто полевых сетей, то они призваны подключать к контроллерам расположенные непосредственно по месту нахождения оборудования блоки ввода/вывода, а также интеллектуальные датчики и исполнительные механизмы. Для их распространения требуется, чтобы каждое подключаемое к сети устройство (в том числе, любой прибор) имело вычислительный ресурс, т. е. было бы интеллектуальным. Тогда подключение приборов к контроллерам становится цифровым, децентрализованным; они объединяются между собою цифровой, двунаправленной, последовательной коммуникационной сетью; при этом каждый прибор будет обслуживать двунаправленную связь. Подкласс чисто полевых сетей по сравнению с общими промышленными сетями отличается значениями основных характеристик сетей: меньшей длиной сети, меньшей скоростью, меньшим объемом передаваемых данных за цикл, меньшей стоимостью сетевых компонентов.

Последнее время появился международный стандарт на промышленную и полевую управляющие сети - стандарт IEC 61158. По этому стандарту следующие сети признаны стандартными промышленными управляющими сетями:

- Technical specification TS 61158;

- ControlNet;

- Profibus;

- P-Net;

- Foundation Fieldbus;

- SwiftNet;

- WorldFip;

- Interbus.

Следует подчеркнуть, что из всех этих сетей подавляющее распространение в мире получили сети Profibus и Foundation Fieldbus.

5. Уровень АРМ подробно рассматривается во втором разделе данного пособия, посвященном SCADA-системам.

6. Сервер (управляющая ЭВМ). На уровне управляющих ЭВМ решаются следующие задачи:

- управление технологическими контроллерами;

- ведение архивов технологической информации;

- обеспечение работы автоматизированных рабочих мест (АРМов).

На рисунке 2 показана структура, при которой задачи управления и ведения архивов разделены между двумя вычислительными машинами. В реальности, уровень управляющих ЭВМ может быть представлен различными архитектурами, от одиночной вычислительной машины до больших вычислительных систем (мейнфреймов), объединенных в локальную сеть рабочих станций и серверов. Очевидно, что для обеспечения функционирования уровня управляющих ЭВМ необходимо специализированное программное обеспечение. В качестве такого программного обеспечения используются системы SCADA.

Использование систем SCADA (Supervisory Control and Data Acquisition) – (системы диспетчерского управления и сбора данных) является в настоящее время основным и наиболее перспективным методом управления сложными динамическими системами. Именно на принципах диспетчерского управления строятся крупные автоматизированные системы в ряде отраслей промышленности и народного хозяйства.

Всю совокупность программного обеспечения SCADA-систем можно подразделить на две большие группы.

1) Серверное ПО. Данное ПО предназначено для:

- обеспечения процесса управления технологическим оборудованием;

- ведения архивов данных;

- обеспечения двусторонней связи АРМов и технологического оборудования.

2) Прикладное ПО. Данное ПО выполняет следующие функции:

- реализация АРМ на локальных рабочих станциях;

- обеспечение пользовательского интерфейса.

Также прикладное ПО предоставляет средства проектирования АРМов, алгоритмов управления, связей с технологическими контроллерами и т.д.








Дата добавления: 2015-08-18; просмотров: 1110. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия