Электрический ток в полупроводниках.
Полупроводниками называют вещества, занимающие в отношении электропроводности промежуточное положение между хорошими проводниками и хорошими изоляторами (диэлектриками). Полупроводниками являются и химические элементы (германий Ge, кремний Si, селен Se, теллур Te), и соединения химических элементов (PbS, CdS, и др.). Природа носителей тока в различных полупроводниках различна. В некоторых из них носителями зарядов являются ионы; в других носителями зарядов являются электроны. Собственная проводимость полупроводников Существует два вида собственной проводимости полупроводников: электронная проводимость и дырочная проводимость полупроводников. 1. Электронная проводимость полупроводников. Электронная проводимость осуществляется направленным перемещением в межатомном пространстве свободных электронов, покинувших валентную оболочку атома в результате внешних воздействий.
2. Дырочная проводимость полупроводников. Дырочная проводимость осуществляется при направленном перемещении валентных электронов на вакантные места в парно-электронных связях – дырки. Валентный электрон нейтрального атома, находящегося в непосредственной близости к положительному иону (дырке) притягиваясь к дырке, перескакивает в неё. При этом на месте нейтрального атома образуется положительный ион (дырка), а на месте положительного иона (дырки) образуется нейтральный атом. В идеально чистом полупроводнике без каких – либо чужеродных примесей каждому свободному электрону соответствует образование одной дырки, т.е. число участвующих в создании тока электронов и дырок одинаково. Проводимость, при которой возникает одинаковое число носителей заряда (электронов и дырок), называется собственной проводимостью полупроводников. Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов. Малейшие следы примесей коренным образом меняют свойства полупроводников. Электрическая проводимость полупроводников при наличии примесей Примесями в полупроводнике считают атомы посторонних химических элементов, не содержащиеся в основном полупроводнике. Примесная проводимость - это проводимость полупроводников, обусловленная внесением в их кристаллические решётки примесей. В одних случаях влияние примесей проявляется в том, что «дырочный» механизм проводимости становится практически невозможным, и ток в полупроводнике осуществляется в основном движением свободных электронов. Такие полупроводники называются электронными полупроводниками или полупроводниками n – типа (от латинского слова negativus - отрицательный). Основными носителями заряда являются электроны, а не основными – дырки. Полупроводники n – типа – это полупроводники с донорными примесями. 1. Донорные примеси. Донорными называют примеси, легко отдающие электроны, и, следовательно, увеличивающие число свободных электронов. Донорные примеси поставляют электроны проводимости без возникновения такого же числа дырок.
В других случаях практически невозможным становится движение свободных электронов, и ток осуществляется только движением дырок. Эти полупроводники называются дырочными полупроводниками или полупроводниками p – типа (от латинского слова positivus - положительный). Основными носителями заряда являются дырки, а не основными – электроны.. Полупроводники р – типа – это полу-проводники с акцепторными примесями. 2. Акцепторные примеси. Акцепторными называют примеси в которых для образования нор-мальных парноэлектронных связей недостаёт электронов. Примером акцепторной примеси в германии Ge являются трёхвалентные атомы галлия Ga
Электрический ток через контакт полупроводников р- типа и n- типа p-n переход – это контактный слой двух примесных полупроводников p-типа и n-типа; p-n переход является границей, разделяющей области с дырочной (p) проводимостью и электронной (n) проводимостью в одном и том же монокристалле. Прямой p-n переход Если n-полупроводник подключён к отрицательному полюсу источника питания, а положительный полюс источника питания соединён с р-полупроводником, то под действием электрического поля электроны в n-полупроводнике и дырки в р-полупроводнике будут двигаться навстречу друг другу к границе раздела полупроводников. Электроны, переходя границу, «заполняют» дырки, ток через р-n-переход осуществляется основными носителями заряда. Вследствие этого проводимость всего образца возрастает. При таком прямом (пропускном) направлении внешнего электрического поля толщина запирающего слоя и его сопротивление уменьшаются В этом направлении ток проходит через границу двух полупроводников.
Обратный р-n-переход Если n-полупроводник соединён с положительным полюсом источника питания, а р-полупроводник соединён с отрицательным полюсом источника питания, то электроны в n-полупроводнике и дырки в р-полупроводнике под действием электрического поля будут перемещаться от границы раздела в противоположные стороны, ток через р-n-переход осуществляется неосновными носителями заряда. Это приводит к утолщению запирающего слоя и увеличению его сопротивления. Вследствие этого проводимость образца оказывается незначительной, а сопротивление – большим Образуется так называемый запирающий слой. При таком направлении внешнего поля электрический ток через контакт р- и n-полупроводников практически не проходит.
Таким образом электронно – дырочный переход обладает одно-сторонней проводимостью. Зависимость силы тока от напряжения – вольт – амперная характеристика р-n перехода изображена на рисунке (вольт – амперная характеристика прямого р-n перехода изображена сплошной линией, вольт – амперная характеристика обратного р-n перехода изображена пунктирной линией). Полупроводниковые приборы: Полупроводниковый диод - для выпрямления переменного тока, в нем используют один р - n - переход с разными сопротивлениями: в прямом направлении сопротивление р - n - перехода значительно меньше, чем в обратном. Фоторезисторы - для регистрации и измерения слабых световых потоков. С их помощью определяют качество поверхностей, контролируют размеры изделий. Термисторы - для дистанционного измерения температуры, противопожарной сигнализации.
|