Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Факультет ЭМСиТ





Вариант № 0.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти обшее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 1.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение, удовлетворяющее начальным условиям х0=0, у0=0.

удовлетворяющее начальным условиям х0=0, у0=0, .

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 2.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=p/2, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

 

Вариант № 3.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0= .

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 4.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 5.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

 

Вариант № 6.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0 .

Задание 7. Написать три первых члена ряда по заданному общему члену , определить интервал сходимости ряда и исследовать сходимость ряда на концах интервала.

 

 

Вариант № 7.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение, удовлетворяющее начальным условиям х0=0, у0=0.

удовлетворяющее начальным условиям х0=0, у0=0 .

Задание 7. Написать три первых члена ряда по заданному общему члену , определить интервал сходимости ряда и исследовать сходимость ряда на концах интервала.

 

 

Вариант № 8.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г)) .

 

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=1, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

Вариант № 9.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=1.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 0.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти обшее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 1.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение, удовлетворяющее начальным условиям х0=0, у0=0.

удовлетворяющее начальным условиям х0=0, у0=0, .

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 2.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=p/2, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

 

Вариант № 3.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0= .

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 4.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 5.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

 

Вариант № 6.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0 .

Задание 7. Написать три первых члена ряда по заданному общему члену , определить интервал сходимости ряда и исследовать сходимость ряда на концах интервала.

 

 

Вариант № 7.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение, удовлетворяющее начальным условиям х0=0, у0=0.

удовлетворяющее начальным условиям х0=0, у0=0 .

Задание 7. Написать три первых члена ряда по заданному общему члену , определить интервал сходимости ряда и исследовать сходимость ряда на концах интервала.

 

 

Вариант № 8.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г)) .

 

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=1, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

Вариант № 9.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г)






Дата добавления: 2015-10-01; просмотров: 618. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2025 год . (0.016 сек.) русская версия | украинская версия