Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Conflicting and complementing concepts


Дата добавления: 2015-08-17; просмотров: 683



Система n линейных уравнений с n неизвестными x1, x2,. . . , xn

(1)

называется системой линейных уравнений n-го порядка; aij – коэффициенты, bi– свободные члены системы.

Численные методы решения систем линейных уравнений делятся на прямые и итерационные [7].

Прямые методы позволяют получить в принципе точное решение за конечное количество арифметических операций, однако при увеличении порядка n системы возрастает погрешность вычисления неизвестных x1, x2, . . . , xn.

Итерационные методы позволяют получать решение с заданной точностью на основе алгоритмов, использующих последовательное приближение (итерацию), однако эффективность итерационных алгоритмов существенно зависит от удачного выбора начального приближения и быстроты сходимости итерационного процесса.

Один из прямых методов, который достаточно просто реализуется средствами Microsoft Excel, использует вычисление обратной матрицы.

 

Если представить систему линейных уравнений (1) в матричном виде

, (2)

где – матрица коэффициентов,

– вектор-столбец неизвестных, – вектор-столбец свободных членов, то решение системы (2) находится следующим образом

(3)

где – матрица, обратная к матрице .

Пример

Найти решение системы линейных уравнений

(4)

двумя методами: прямым, с использованием обратной матрицы, и итерационным. Сравнить полученные решения.


<== предыдущая лекция | следующая лекция ==>
An overview of definitions in the literature | Attempts to describe an autonomous learner
1 | 2 | 3 | <== 4 ==> | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
Studopedia.info - Студопедия - 2014-2025 год . (0.21 сек.) російська версія | українська версія

Генерация страницы за: 0.21 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7