Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Класифікація і влаштування основних робочих органів.


Дата добавления: 2014-12-06; просмотров: 575



В ЭВМ схемы, реализующие операцию сложения, получаются гораздо проще и компактнее, чем схемы, выполняющие операцию вычитания. Поэтому обычно в цифровых машинах применяют только схемы сложения, а операцию вычитания заменяют сложением специально подобранных кодов чисел.

Применяются следующие коды чисел: прямой, обратный и дополнительный. Прямой код применяют при умножении и делении, а обратный и дополнительный - используют для замены операции вычитания сложением. Существуют также модифицированные обратный и дополнительный коды. Изображения положительных чисел совпадают во всех трех кодах: прямом, обратном и дополнительном.

Обратный и дополнительный коды отрицательных чисел (а также их модификации) различны.

 

Простановка знака суммы при алгебраическом сложении должна производиться автоматически. Знаки (+) и (–) у слагаемых могут обозначаться только при помощи сигналов, "понятных" машине, т. е. при помощи нулей и единиц. При этом следует иметь в виду, что электронные считающие элементы назад не срабатывают, а поэтому вычитание в них заменяется сложением в дополнительном или обратном кодах. Рассмотрим сначала сложение в дополнительном коде. Пусть нужно произвести следующее действие: от 176 – 27, не используя вычитание. Условимся все числа писать с одинаковым количеством цифр, равным количеству цифр в наибольшем числе: 176 – 027. Заменив число 027 его дополнением до 1000, которое называется дополнительным кодом числа 027, т. е. числом 1000 – 973 = 027, получим: 176 – (1000 – 973) = 176 + 973 – 1000.

Решение: +176

973

_1149

1000

+149

 

Очевидно, в этом примере можно обойтись без вычитания, так как вычитание числа 1000 можно не производить, если единица переноса в старший разряд каким-либо действием будет обращена в нуль.

Рассмотрим еще один пример: 027 - 176.

Как и прежде, заменим число 176 его дополнением до 1000.

Тогда 027 - 176 = +027

824

_851

1000

-149

Здесь единицы переноса в старший разряд не образуется, но отрицательный результат получился в виде дополнения его до 1000.

Таким образом, в наших примерах получается, что если отрицательные слагаемые заменять их дополнением до 1000, то отрицательная сумма тоже получится в виде дополнения до 1000.

 

Положительные числа в приведенных примерах остаются без изменения. Применим это же правило для алгебраического сложения двух отрицательных чисел:

- 176 - 527 = - (1000 - 824) - (1000 - 473) = -1000 + 824 - 1000 + 473 =

= +824

473

_1297

1000

_297

1000

-703

 

Правило соблюдается и в этом примере. Условимся число (–1000) обозначать перед нашими числами в виде 1, а в случае его отсутствия ставить перед числом О. Тогда 1 будет ставиться перед всеми отрицательными числами:

176 - 027 = +0.176

1.973

0.149

_

По-видимому, можно 1 заменить 1, если при использовании 1 как знака производить “сложение" цифр, заменяющих знаки (+) и (–), по определенным правилам. В первом примере это правило выглядит так:

1 - 1

176 - 027 = +0.176

1.973

0.149, т.е. “сложение” цифр, заменяющих знаки, должно идти без переноса в старший разряд.

1

Во втором примере: 027 - 176 = + 0.027

1.824

1.851

Поскольку 1 изображается (-1000), то результат 1.851 есть дополнение числа 851 до 1000, взятое со знаком минус: 1.851 à 1.149 = - 149.

В третьем примере: -176 - 527 = + 1.824

1.473

1.297

Здесь также теряется единица переноса в старший разряд при "сложении” цифр, заменяющих знаки (+) и (–). Во всех трех примерах слагаемые трехзначные, а суммы не превосходят 1000. Рассмотрим примеры, в которых сумма не меньше тысячи при трехзначных слагаемых:

+0.176

0.825

1.001

Если придерживаться правила, предложенного в предыдущих примерах, то сумма 1.001 означает (– 1000 + 001) = – 999, что неправильно. В то же время, если сдвинуть всю сумму вправо, освободив место для знака, то результат 0.1001= + 1001 будет правильным, но станет четырехзначным. Рассмотрим случай, когда оба слагаемых отрицательны.

-176 - 825 = +1.824

1.175

0.999

Результат +999 явно неправилен, и если “сложение" знаков производить по предложенному правилу, то его даже невозможно исправить. Нужно сохранить единицу переноса в старший разряд знака, что можно сделать, выделив для обозначения знаков (+) и (–) два разряда. Такой код числа называется модифицированным дополнительным кодом. В этом коде очевидно плюс следует обозначать 00, а минус 11. Тогда при четырехзначной сумме трехзначных слагаемых получим:

+00.176

00.825

01.001

В двух разрядах для знака разные цифры: 0 и 1. Сдвинув всю сумму вправо, получим правильный результат 00.1001.

 

Рассмотрим другой пример:

- 176 - 825 = +11.824

11.175

10.999

В знаковом разряде опять-таки разные цифры: 1 и 0. Сдвинем результат вправо, причем в первом знаковом разряде поставим 1, а в цифровых разрядах получившегося числа 11.0999 заменим первый 0 на 1, а остальное число – его дополнением до 1000. Тогда получим правильный четырехзначный результат 11.1001.

Рассмотрим, будут ли справедливы все предложенные правила в общем случае для чисел в двоичной системе счисления.

В цифровых вычислительных машинах различными кодами изображаются только двоичные числа, являющиеся правильными дробями.


<== предыдущая лекция | следующая лекция ==>
Класифікація і влаштування робочих органів. | Гідросистема комбайну.
1 | 2 | <== 3 ==> | 4 | 5 |
Studopedia.info - Студопедия - 2014-2024 год . (0.214 сек.) російська версія | українська версія

Генерация страницы за: 0.214 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7