Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Виховна функція сім'ї


Дата добавления: 2015-10-15; просмотров: 636



Принимать сок сырого картофеля по ½ стакана за 60 минут до еды. После приема сок лежать 30 минут. Пить 1 неделю, затем сделать перерыв и снова пропить сок 1 неделю.

Утром натощак принять ½ стакана картофельного сока со столовой ложкой меда. Перед сном, через 2 часа после еды выпить ¾ стакана картофельного сока со столовой ложкой меда.

Картофель очистить, нарезать мелкими кубиками и сварить без соли. Пить отвар по ½ - 1 стакану 3 раза в день за 30 минут до еды.

 

ОСНОВЫ ВЫСШИХ ФИНАНСОВЫХ ВИЧИСЛЕНИЙ

Доц. Демидова

Для специальности «Финансы и кредит»

«Бухгалтерский учет, анализ и аудит»

Лекция 1ч.

ПЛАН ЛЕКЦИИ

1. Понятие процентных денег.

2. Сложные и простые проценты.

3. Дисконтирование и непрерывные проценты. Эффективная и номинальная процентная ставка.

Понятие процентных денег

Любая финансовая, кредитная или коммерческая операция предполагает совокупность условий, согласованных ее участниками. К таким условиям относятся: сумма кредита, займа или инвестиций, цена товара, сроки, способы начисления процентов и погашения долга и т.д. Совместное влияние на финансовую операцию многих факторов делает конечный ее результат неочевидным. Для его оценивания необходим специальный количественный анализ. В практических финансовых и коммерческих операциях суммы денег обязательно связываются с некоторыми конкретными моментами или интервалами времени. Для этого в контрактах фиксируются соответствующие сроки, даты, периодичность поступлений денежных средств или их выплат.

Фактор времени играет не меньшую роль, чем размеры денежных сумм. Необходимость учета фактора времени определяется принципом неравноценности денег, относящихся к разным моментам времени. Дело в том, что даже в условиях отсутствия инфляции и риска 1 млн. руб., полученных через год, не равноценен этой же сумме, поступившей сегодня. Неравноценность определяется тем, что теоретически любая сумма денег может быть инвестирована и принести доход. Поступившие доходы в свою очередь могут быть реинвестированы и т.д. Следовательно, сегодняшние деньги в этом смысле ценнее будущих, а будущие поступления менее ценны, чем современные.

Очевидным следствием принципа «неравноценности» является неправомерность суммирования денежных величин, относящихся к разным моментам времени. Подобного рода суммирование допустимо лишь там, где фактор времени не имеет значения - например, в бухучете для получения итогов по периодам и в финансовом контроле.

В финансовых вычислениях фактор времени обязательно учитывается в качестве одного из важнейших элементов. Его учет осуществляется с помощью начисления процентов.

Сложные и простые проценты.

Под процентными деньгамиили, кратко, процентамив финансовых расчетах понимают абсолютную величину дохода от предоставления денег в долг в любой форме: в виде выдачи денежной ссуды, продажи в кредит, помещении денег на сберегательный счет, учет векселя, покупка сберегательного сертификата или облигаций и т.д. В какой бы форме не выступали проценты, это всегда конкретное проявление такой экономической категории, как ссудный процент. При заключении финансового или кредитного соглашения стороны (кредитор и заемщик) договариваются о размере процентной ставки- отношения суммы процентных денег, выплачиваемых за фиксированный отрезок времени к величине ссуды. Интервал времени, к которому относится процентная ставка, называют периодом начисления. Ставка измеряется в процентах, в виде десятичной или

натуральной дроби. В последнем случае она фиксируется в контрактах с точностью до 1/16 или даже 1/32.

Начисление процентов, как правило, производится дискретно, т.е.в отдельные (обычно равноотстоящие) моменты времени (дискретные проценты), причем, в качестве периодов начисления принимают год, полугодие, квартал, месяц. Иногда практикуют ежедневное начисление, а в ряде случаев удобно применять непрерывные проценты.

Проценты либо выплачиваются кредитору по мере их начисления, либо присоединяются к сумме долга. Процесс увеличения денег в связи с присоединением процентов к сумме долга называют наращениемили ростомпервоначальной суммы. В количественном финансовом анализе процентная ставка применяется не только как инструмент наращения суммы долга, но и в более широком смысле - как измеритель степени доходности (эффективности) финансовой операции или коммерческо-хозяйственной деятельности.

В практике существуют различные способы начисления процентов, зависящие от условий контрактов. Соответственно применяют различные виды процентных ставок. Одно из основных отличий связано с выбором исходной базы (суммы) для начисления процентов. Ставки процентов могут применяться к одной и той же начальной сумме на протяжении всего срока ссуды или к сумме с начисленными в предыдущем периоде процентами. В первом случае они называются простыми, а во втором - сложными процентными ставками.

Процентные ставки, указываемые в контрактах, могут быть постоянными или переменнымиплавающими»). Плавающие ставки часто применяются во внешнеэкономических операциях. В этом случае значение ставки равно сумме некоторой изменяющейся во времени базовой величины и надбавки к ней (маржи). Примером базовой ставки может служить лондонская межбанковская ставка ЛИБОР (LIBOR - London interbank offered rate) или московская межбанковская ставка МИБОР. Размер маржи определяется целым рядом условий (сроком операции и т.д.). Судя по мировой практике, он обычно находится в пределах 0,5-5%. В контракте может использоваться и переменный во времени размер маржи.

Теперь мы рассмотрим методы анализа сделок, в которых предусматриваются разовые платежи при выдаче и погашении кредита или депозита. Задачи такого анализа сводятся к расчету наращенной суммы, суммы процентов и размера дисконта, современной величины (текущей стоимости) платежа, который будет произведен в будущем.

Под наращенной суммойссуды (долга, депозита, других видов инвестированных средств) понимается первоначальная ее сумма вместе с начисленными на нее процентами к концу срока.

Пусть P первоначальная сумма денег, i - ставка простых процентов. Начисленные проценты за один период равны Pi, а за n периодов - Pni.

Процесс изменения суммы долга с начисленными простыми процентами описывается арифметической прогрессией, членами которой являются величины

P, P+Pi=P(1+i), P(1+i)+Pi=P(1+2i) и т.д. до P(1+ni).

Первый член этой прогрессии равен P, разность Pi, а последний член определяемый как

S=P(1+ni) (1)

и является наращенной суммой. Формула (1) называется формулой наращения по простым процентамили, кратко, формулой простых процентов. Множитель (1+ni) является множителем наращения. Он показывает во сколько раз наращенная сумма больше первоначальной суммы. Наращенную сумму можно представить в виде двух слагаемых:

первоначальной суммы P и суммы процентов I

S=P+I, (2)

где

I=Pni. (3)

Процесс роста суммы долга по простым процентам легко представить графически (см. Рис. 1). При начислении простых процентов по ставке i за базу берется первоначальная сумма долга. Наращенная сумма S растет линейно от времени.

Пример 1.

Определим проценты и сумму накопленного долга, если ссуда равна 100000 руб., срок долга 1,5 года при ставке простых процентов, равной 15% годовых.

I=100000 •1,5 •0,15=22500 руб. - проценты за 1,5 года

S=100000+22500=122500 руб. - наращенная сумма.

Начисление простых процентов обычно используется в двух случаях:

1) при заключении краткосрочных контрактов (предоставлении краткосрочных кредитов и т.п.), срок которых не превышает года (n≤1);

2) когда проценты не присоединяются к сумме долга, а периодически выплачиваются. Ставка процентов обычно устанавливается в расчете за год, поэтому при продолжительности ссуды менее года необходимо выяснить какая часть процента уплачивается кредитору. Для этого величину n выражают в виде дроби

n = t / K, (4) где

n - срок ссуды (измеренный в долях года),

K - число дней в году (временная база),

t - срок операции (ссуды) в днях.

Здесь возможно несколько вариантов расчета процентов, различающихся выбором временной базы K и способом измерения срока пользования ссудой. Часто за базу измерения времени берут год, условно состоящий из 360 дней (12 месяцев по 30 дней в каждом). В этом случае говорят, что вычисляют обыкновенныйили коммерческий процент. В отличие от него точный процентполучают, когда за базу берут действительное

число дней в году: 365 или 366. Определение числа дней пользования ссудой также может быть точнымили приближенным. В первом случае вычисляют фактическое число дней между двумя датами, во втором - продолжительность ссуды определяется числом месяцев и дней ссуды, приближенно считая все месяцы равными, содержащими по 30 дней. В обоих случаях счет дней начинается со следующего дня после открытия операции. Подсчет точного числа дней между двумя датами можно осуществить на компьютере, взяв разность этих дат, или с помощью специальной таблицы, в которой представлены порядковые номера дат в году. Комбинируя различные варианты временной базы и методов подсчета дней ссуды, получаем три варианта расчета процентов, применяемые в практике:

1) точные проценты с точным числом дней ссуды (365/365) - британский;

2) обыкновенные проценты с точным числом дней ссуды (365/360) - французский;

3) обыкновенные проценты с приближенным числом дней ссуды (360/360) - германский.

Вариант расчета с точными процентами и приближенным измерением времени ссуды не применяется.

Простые переменные ставки

Как известно, процентные ставки не остаются неизменными во времени, поэтому в кредитных соглашениях иногда предусматриваются дискретно изменяющиеся во времени процентные ставки. В этом случае формула расчета наращенной суммы принимает следующий вид

S = P(1+n1i1+n2i2+...) = P(1+Σntit), (5)

где

P - первоначальная сумма (ссуда),

it - ставка простых процентов в периоде с номером t,

nt - продолжительность периода t - периода начисления по ставке it.

Пример 2.

Пусть в договоре, рассчитанном на год, принята ставка простых процентов на первый квартал в размере 10% годовых, а на каждый последующий на 1% меньше, чем в предыдущий. Определим множитель наращения за весь срок договора.

1+Σntit = 1+0,25•0,10+0,25•0,09+025•0,08+0,25•0,07 = 1,085

Реинвестирование по простым процентам

Сумма депозита, полученная в конце обозначенного периода вместе с начисленными на нее процентами, может быть вновь инвестирована, хотя, скорее всего, и под другую процентную ставку, и этот процесс реинвестированияиногда повторяется неоднократно в пределах расчетного срока N. Тогда в случае многократного инвестирования в краткосрочные депозиты и применения простой процентной ставки наращенная сумма для всего срока N вычисляется находится по формуле

S = P(1+n1i1)(1+n2i2) ••• = (6 )

где

n1, n2,..., nm - продолжительности последовательных периодов реинвестирования,

i1, i2,..., im - ставки, по которым производится реинвестирование.

Сложные проценты

Сложные проценты применяются в долгосрочных финансово- кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализациейпроцентов.

Формула наращения по сложным процентам

Пусть первоначальная сумма долга равна P, тогда через один год сумма долга с присоединенными процентами составит P(1+i), через 2 года P(1+i)(1+i)=P(1+i)2, через n лет - P(1+i)n. Таким образом, получаем формулу наращения для сложных процентов

S=P(1+i)n, (7)

где S - наращенная сумма, i - годовая ставка сложных процентов,

n - срок ссуды,

(1+i)n - множитель наращения.

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т.д.). Наращение по сложным процентам представляет собой рост по закону геометрической

прогрессии, первый член которой равен P, а знаменатель (1+i).

Отметим, что при сроке n<1 наращение по простым процентам дает больший результат, чем по сложным, а при n>1 - наоборот. В этом нетрудно убедиться на конкретных числовых примерах. Наибольшее превышение суммы, наращенной по простым процентам, над суммой, наращенной по сложным процентам, (при одинаковых процентных ставках) достигается в средней части периода.

Формула наращения по сложным процентам, когда ставка меняется во времени

В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид S= P*(1+ i1) n1*(1+i2)n2*….*(1+ik)nk (8)

где i1, i2,..., ik - последовательные значения ставок процентов,

действующих в периоды n1, n2,..., nk соответственно.

Сложные проценты

Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализациейпроцентов.

Формула наращения по сложным процентам

Пусть первоначальная сумма долга равна P, тогда через один год сумма долга с присоединенными процентами составит P(1+i), через 2 года P(1+i)(1+i)=P(1+i)2, через n лет - P(1+i)n. Таким образом, получаем формулу наращения для сложных процентов

S=P(1+i)n, (9)

где S - наращенная сумма, i - годовая ставка сложных процентов,

n - срок ссуды,

(1+i)n - множитель наращения.

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т.д.). Наращение по сложным процентам представляет собой рост по закону геометрической

прогрессии, первый член которой равен P, а знаменатель (1+i).

Отметим, что при сроке n<1 наращение по простым процентам дает больший результат, чем по сложным, а при n>1 - наоборот. В этом нетрудно убедиться на конкретных числовых примерах. Наибольшее превышение суммы, наращенной по простым процентам, над суммой, наращенной по сложным процентам, (при одинаковых процентных ставках) достигается в средней части периода.

Пример.

В договоре зафиксирована переменная ставка сложных процентов,

определяемая как 20% годовых плюс маржа 10% в первые два года, 8% в

третий год, 5% в четвертый год. Определить величину множителя

наращения за 4 года.

Решение.

(1+0,3)2(1+0,28)(1+0,25)=2,704


<== предыдущая лекция | следующая лекция ==>
ІІ. МЕТОДИЧНИЙ БЛОК | Особливості сімейного виховання дошкільників
<== 1 ==> | 2 | 3 | 4 | 5 | 6 |
Studopedia.info - Студопедия - 2014-2024 год . (0.195 сек.) російська версія | українська версія

Генерация страницы за: 0.195 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7