Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Ключові поняття


Дата добавления: 2015-10-19; просмотров: 516



 

1.Даны матрицы

и .

Найти ранг матрицы

2. Методом обратной матрицы решить систему:

3. Установить, имеет ли однородная система


ненулевое решение. Найти общее решение системы.

4. Найти значение параметра α, при котором векторы и перпендикулярны, если = (6; 3; 5) и = (1; 3; 2).

5. Даны четыре вектора

=(2;1;0); =(1;–1;2); =(2;2;–1); =(3;7;– 7)

в некотором базисе. Показать, что векторы , , образуют базис, и найти координаты вектора в этом базисе.

6. Найти собственные значения и собственные векторы линейного оператора , заданного матрицей А= .

7. а) Методом Лагранжа привести квадратичную форму

f(x1, x2)=4x12+3 x22+4x1x2

 

к каноническому виду (указать пример соответствующего преобразования координат).

б) По критерию Сильвестра исследовать на знакоопределенность квадратичную форму

f(x1, x2, x3)=2x12+5x22+3x32 +2x1x22x1x3 2x2x3.

 

1.Даны матрицы

и .

 

Найти ранг матрицы C=A∙B.

 

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

 

 

1. Вычесть из 2й строки 1ю.

 

 

 

2. Домножаем 1ю строку на и из 3й строки вычитаем 1ю.

 

 

3. Меняем 2ю и 3ю строки местами.

 

 

Количество линейно независимых строк = 3

 

 

Ответ: Ранг матрицы = 3.

 

2. Методом обратной матрицы решить систему:

 

 

 

 

Находим определитель матрицы.

 

 

Определяем матрицу миноров матрицы А.

 

1)

 

2)

 

3)

 

4)

 

5)

 

6)

 

7)

 

8)

 

9)

 

 

Меняем знаки у выделенных элементов, получаем :

 

 

 

 

Ответ:X=1; Y=2; Z=1.

 

3. Установить, имеет ли однородная система


 

ненулевое решение. Найти общее решение системы.

 

Преобразовываем матрицу до того момента, пока все показатели, находящиеся ниже диагонали, не будут = 0.

 

 

Из 2й строки вычитаем 1ю, получаем:

Из 3й строки вычитаем 1ю, получаем:

Из 4й строки вычитаем 1ю, получаем:

Умножаем 3ю строку на -1, получаем:

Из 3й строки вычитаем 2ю, далее меняем местами 3ю и 4ю строки, получаем:

Делим 3ю строку на 2, далее умножаем на -1, вычитаем из 3й строки 2ю, получаем:

Делим 2ю строку на 2, получаем систему:

 

4. Найти значение параметра α, при котором векторы и перпендикулярны, если = (6; 3; 5) и = (1; 3; 2).

 

 

5. Даны четыре вектора

=(2;1;0); =(1;–1;2); =(2;2;–1); =(3;7;– 7)

в некотором базисе. Показать, что векторы , , образуют базис, и найти координаты вектора в этом базисе.

 

Показатели линейно независимы следовательно образуют базис.

(определитель матрицы).

Далее необходимо найти обратную матрицу

Вычисляем матрицу миноров матрицы A.

 

1)

2)

3)

4)

5)

6)

7)

8)

9)

 

 

У выделенных элементов меняем знаки на противоположные.

 

 

1)

2)

3)

6. Найти собственные значения и собственные векторы линейного оператора , заданного матрицей А= .

Находим собственные значения:

Далее для каждого собственного значения найдем его собственные векторы.

Решаем систему

Необходимо подобрать значение так, чтобы было целым и положительным числом.

Пусть

Таким образом, собственные векторы собственного значения представляют собой координаты

Необходимо подобрать значение так, чтобы было целым и положительным числом.

Пусть

Таким образом, собственные векторы собственного значения представляют собой координаты

7. а) Методом Лагранжа привести квадратичную форму

f(x1, x2)=4x12+3 x22+4x1x2

 

к каноническому виду (указать пример соответствующего преобразования координат).

б) По критерию Сильвестра исследовать на знакоопределенность квадратичную форму

f(x1, x2, x3)=2x12+5x22+3x32 +2x1x22x1x3 2x2x3.

 

Проектирование механизированного процесса срезки растительного слоя без применения ЭВМ (примеры)

 

Растительный слой на строительной площадке срезают бульдозерами, автогрейдерами и скреперами (в зависимости от дальности перемещения), собирают в штабели и в последующем используют для работ по озеленению и благоустройству терри­тории.

В курсовом проекте необходимо выполнить технологический расчет процесса срезки растительного слоя. Процесс транспор­тирования растительного слоя за пределы строительной площадки не проектируют, но рассматривают как выполненный.


<== предыдущая лекция | следующая лекция ==>
Навчально-науковий інститут підприємництва та перспективних технологій | Завдання на наступне заняття
1 | <== 2 ==> | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Studopedia.info - Студопедия - 2014-2024 год . (0.224 сек.) російська версія | українська версія

Генерация страницы за: 0.224 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7