Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнения Бернулли





 

Определение. Уравнение вида

 

(1.43)

 

где – непрерывные на некотором интервале функции, действительное число, отличное от 0 и 1, называется уравнением Бернулли.

Делением обеих частей на и подстановкой , где новая неизвестная функция, это уравнение приводится к линейному уравнению

 

.

 

Заметим, что при делении обеих частей уравнения (1.43) на при возможна потеря решения . Это решение является частным, если , и особым, если .

Пример 1 Решить уравнение

.

Решение. Обе части уравнения разделим на , тогда будем иметь:

. (1.44)

Положим , откуда . В силу введенной подстановки уравнение (1.44) можно записать следующим образом:

 

или

(1.45)

 

Последнее уравнение – линейное относительно функции . Его общее решение есть

,

 

где произвольная константа (см. п.1.4., пример 1). Отсюда, учитывая, что , записываем общий интеграл исходного уравнения

.

Так как показатель степени в правой части нашего уравнения равен 2, то потерянное при интегрировании решение является частным.

Замечание.При интегрировании уравнения Бернулли можно также непосредственно применить подстановку или метод вариации произвольной постоянной.

Пример 2 Проинтегрировать уравнение

. (1.46)

Решение. Уравнение (1.46) – это уравнение Бернулли. Положим , тогда (1.46) запишется в виде

 

.

или

.

Функцию выберем так, чтобы . Например, пусть . Подставив вместо в последнее уравнение и учитывая, что , для определения будем иметь уравнение

 

. (1.47)

Последнее уравнение – это уравнение с разделяющимися переменными, его общий интеграл есть

 

,

откуда

,

где произвольная константа. Следовательно, общее решение ОДУ (1.46) есть

. (1.48)

 

Заметим, что при интегрировании уравнения (1.47) методом разделения переменных мы теряем решение , это ведет к потере решения уравнения (1.46). Так как в правой части (1.46) стоит степень с показателем , то теряемое решение является особым.

Рассмотрим другой способ решения уравнения (1.46), а именно проинтегрируем его методом вариации произвольной постоянной. Запишем однородное уравнение, соответствующее (1.46):

 

.

 

Его общее решение есть . Пусть С= С(х), тогда общее решение (1.41) будем искать в виде

 

. (1.49)

Подставив и в уравнение, будем иметь

 

,

или

.

Проинтегрировав последнее уравнение, находим

,

или

,

где произвольная константа, . Подставляя С(х) в (1.49), получаем общее решение уравнения (1.49) в форме (1.48)

 

.

 






Дата добавления: 2014-11-12; просмотров: 223. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.009 сек.) русская версия | украинская версия