Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция 5





8.1. Вихрове електричне поле

Джерелами електричного поля можуть бути або електричні заря­ди, або змінні в часі магнітні поля. У першому випадку поле елект­ричних зарядів описується узагальненим законом Кулона . Це поле є потенціальним, й інтеграл по довільному замкненому контуру L дорівнює нулеві . Силові лінії електричних полів є незамкненими: вони виходять з позитивних зарядів і входять у негативні або простягаються в нескінченність. З цієї при­чини електростатичне поле не може забезпечити неперервний рух електричних зарядів уздовж замкнених провідників, тобто створити електричний струм. Щоб виник й існував тривалий час електричний струм у замкненому електричному колі, потрібна наявність сторон­ніх сил. Тоді . Електричне поле напруженістю Е, яке при цьому виникає в провіднику і зумовлює постійне напрямлене пе­реміщення електричних зарядів уздовж замкненого електричного ко­ла, докорінно відрізняється від електростатичного поля. Лінії напру­женості Е цього поля є замкненими вздовж провідного контуру, тому циркуляція вектора Е не дорівнює нулеві . Такі поля називають вихровими.

Електричні поля, які збуджуються змінними в часі магнітними полями, також є вихровими і для них циркуляція вектора напруже­ності Е по довільному замкненому контуру і не дорівнює нулеві, як в електростатичних полях, а дорівнює швидкості зміни магнітного потоку, який пронизує довільну поверхню, що спирається на контур інтегрування,

Такі вихрові електричні поля зумовлюють неперервний рух елек­тричних зарядів уздовж замкнених провідників, вміщених у це поле, тобто можуть спричинювати виникнення індукційних струмів, що вперше і спостерігалося в дослідах Фарадея.

За уявленнями Дж. Максвела, всяке змінне в часі магнітне поле збуджує в оточуючому просторі вихрове електричне поле. Існує істотна відмінність тлумачення електромагнітної індукції М. Фара­деєм і Дж. Максвелом. Якщо М. Фарадей уявляв електромагнітну індукцію як збудження електричного струму в замкненому провідни­ку під дією змінного магнітного поля, то, на думку Дж. Максвела, суть явища електромагнітної індукції зводиться до виникнення вих­рового електричного поля скрізь, де є змінне магнітне поле, і, отже, для прояву явища електромагнітної індукції наявність провідників є не обов'язковою. Виникнення індукційного струму в замкненому провідному контурі — це лише один із проявів виникнення вихрово­го електричного поля під дією змінного в часі магнітного поля. Вих­рове поле напруженістю Е може спричинювати й інші дії, напри­клад, поляризувати діелектрик, викликати пробій діелектрика між обкладками конденсатора, прискорювати або гальмувати заряджені частинки тощо. Вихрове електричне поле, що виникає при зміні магнітного поля, може збуджувати електричний струм у незамкненому електричному колі, наприклад у колі з повітряним плоским конден­сатором.

Отже, вихрове електричне поле виникає скрізь, де є змінне магнітне поле, силові лінії його є замкненими і воно здатне індукува­ти електричні струми. Закон електромагнітної індукції в узагальне­ному Дж. Максвелом вигляді записується так: . Та­кий запис закону свідчить про те, що скрізь, де є змінне магнітне по­ле , виникає вихрове електричне поле.

8.2. Електромагнітне поле

Електромагнітне поле є формою матерії, через яку здійснюється взаємодія між електричнозарядженими частинками. Поняття поля (електричного та магнітного) ввів М. Фарадей у 1830 р. Згідно з уявленнями Дж. Максвела заряджені частинки або струми створюють в усіх точках оточуючого їх простору особливий стан — поле, яке діє на всяку іншу заряджену частинку або струм, вміщені в довільну точку цього простору. Отже, поле заряджених електричних частинок або струмів зосереджене в усіх точках простору, що їх оточує. У кожній такій точці електро­магнітне поле характеризується енергією, імпульсом тощо.

Електромагнітне поле може існувати і вільно, незалежно від дже­рел, які його створили, у вигляді електромагнітних хвиль. У 1865 р. Дж. Максвел теоретично показав, що електромагнітні коливання за своєю внутрішньою природою мають властивість поширюватись у просторі зі швидкістю світла. Цей теоретичний висновок було підтверджено у 1888 р. дослідами німецького фізика Г. Герца, що відіграло вирішальну роль в утвердженні єдиної природи електрич­них, магнітних і світлових явищ.

Електромагнітне поле у вакуумі характеризується векторами на­пруженості електричного поля й індукції магнітного поля . Цими векторами визначаються сили, які діють з боку електромагнітного поля на рухомі й нерухомі електричнозаряджені частинки. У середо­вищі електромагнітне поле характеризують двома додатковими пара­метрами: вектором індукції (зміщення) електричного поля D і векто­ром напруженості магнітного поля Н.

Електромагнітне поле в будь-якому середовищі описується в макро­скопічній електродинаміці системою рівнянь Максвела, які дають можливість визначити силові характеристики поля і залежно від розподілу зарядів і струмів. Вихрове електричне поле збуджується змінним магнітним полем, а вихрове магнітне поле — змінним у часі електричним полем. Якщо в певній точці простору виникає змінне електричне поле, то в сусідніх точках виникає змінне магнітне поле, яке. у свою чергу, зумовлює появу в сусідніх точках змінного елек­тричного поля і т. д. Періодичні зміни електричного і магнітного полів становлять електромагнітне поле як форму матерії, через яку здійснюється електромагнітна взаємодія між матеріальними електричнозарядженими частинками. Оскільки до складу речовинного матеріального світу входять позитивні і негативні електричні заряди як структурні елементи атомів, то й електромагнітна взаємодія як між окремими електричними зарядами, так і їхніми сукупностями (рухомими або нерухомими) є невід'ємною властивістю матерії і, от­же, фундаментальною взаємодією поряд із сильною, слабкою та гравітаційною взаємодіями, які проявляються в природі. Електро­магнітна взаємодія є далеко діючою і може спричиняти як притяган­ня, так і відштовхування між зарядженими тілами або струмами. До електромагнітної взаємодії зводиться більшість макроскопічних явищ: сили пружності, тертя, поверхневий натяг. Електромагнітною взаємодією визначаються агрегатний стан речовини, хімічні перетво­рення, електричні, магнітні й оптичні явища, іонізація, різноманітні атомні процеси тощо.

Явища, які визначаються порівняно слабкими і повільно змінни­ми електромагнітними полями, описуються законами класичної електродинаміки за допомогою системи рівнянь Максвела. Для сильних і швидкозмінних полів визначальними є квантові ефекти, що описуються законами квантової електродинаміки.

8.3. Струм зміщення. Система рівнянь Максвела

Дамо загальну характеристику теорії Максвела. Вона розроблена способом послідовного теоретичного і математичного узагальнень основних експериментальних законів електричних і магнітних явищ: закону Кулона, узагальненого на основі теореми Гауса, закону повного струму та закону електромагнітної індукції. Теорія Максве­ла є феноменологічною, тобто такою, яка електричні і магнітні яви­ща не пов'язує із структурою речовини і заряду. В ній не розкри­вається внутрішній механізм явищ взаємодії поля і речовини. Вплив середовища характеризується макроскопічними параметрами: діелектричною ε і магнітною μ, проникностями та питомою електро­провідністю σ. Теорія Максвела розглядає поля, що створюються макроскопічними зарядами та струмами, рівномірно розподіленими в об'ємах, що є значно більшими від характерних об'ємів атомів і мо­лекул речовини, на відстанях від джерел значно більших за атомні розміри. Зміни полів розглядаються в часових інтервалах, значно більших від характерних часових інтервалів атомних процесів (наприклад, періоду обертання електронів на орбітах навколо ядер). Теорія Максвела розглядає макрополя, які є наслідком усереднення по фізично нескінченно малих об'ємах й інтервалах часу мікрополів. Ця теорія є теорією близькодії на противагу помилковим поглядам, які сформувалися на основі емпіричних законів електрики і магне­тизму, що допускали миттєве поширення у просторі електричних сигналів на будь-яку відстань без участі проміжного середовища (концепція далекодії). Концепція далекодії базувалася на ньютонівських уявленнях про характер сил всесвітнього тяжіння. Пізніше Дж. Максвел розвинув ідеї М. Фарадея, за якими електро­магнітні явища є проявом фізичних процесів у проміжному середо­вищі, що заповнює простір між зарядженими тілами або струмами. За Дж. Максвелом, електромагнітна взаємодія передається від однієї точки простору до іншої матеріальним агентом — електромаг­нітним полем — зі скінченою швидкістю, яка у вакуумі дорівнює швидкості світла с = 3∙ 108 м/с. У теорії Максвела розкривається електромагнітна природа світла і, отже, електричні, магнітні та світлові явища розглядаються в єдності і зведені до однакової їхньої природи.

Рис. 8.1 Рис.8.2

Принципово важливою особливістю електричних і магнітних полів є наявність тісного взаємозв'язку між ними. Ще М. Фарадей експериментальне виявив, що зміна в часі магнітного поля спричи­няє виникнення вихрового електричного поля (явище електромаг­нітної індукції), а Дж. Максвел теоретично довів, що зміна в часі електричного поля має спричиняти виникнення вихрового маг­нітного поля. Теоретичний висновок Максвела пізніше, у 1888 р., було підтверджено дослідами Герца.

Закон електромагнітної індукції в інтегральній формі записують так:

. (8.1)

Зв’язок між зміною магнітного поля і напруженістю E вихрового електричного поля (або електрорушійною силою ) схематично показано на рис. 8.1. Напрям ліній відповідає правилу Ленца. Цю закономірність відображає також і знак мінус у формулі (8.1). Гіпотеза Максвела полягала в тому, що існує аналогічне до (8.1) співвідношення між зміною в часі електричного поля і вихро­вим магнітним полем

. (8.2)

Зі зміною в часі індукції (зміщення) електричного поля виникає магніторушійна сила . Це й було теоретично передбачено Дж. Максвелом.

Зв'язок між зміною індукції електричного поля і напрямом напруженості вихрового магнітного поля ілюструє рис.8.2. Звер­німо увагу на те, що зв'язок напряму H і визначається за прави­лом правого гвинта.

Вихрове магнітне поле, як відомо, створюється також струмами провідності (закон повного струму):

. (8.3)

Об'єднавши формули (8.2) і (8.3), можна записати

. (8.4)

З рівності (8.4) випливає, що в природі існує два джерела вихро­вого магнітного поля: струми провідності і змінне в часі електричне поле . Оскільки змінне в часі електричне поле створює магнітне поле так само, як і струми провідності, то природ­но було вважати, що є також особливим струмом, який Дж. Максвел назвав струмом зміщення.

Перейдемо до диференціального запису рівняння (8.4). З цією метою застосуємо до лівої частини цього рівняння теорему Стокса і одержимо

. (8.5)

Тоді рівність (8.4) перепишемо так:

. (8.6)

Оскільки поверхня інтегрування в (8.6) є довільною, то від рівності інтегралів можна перейти до рівності підінтегральних ви­разів

. (8.7)

Рівності (8.4) і (8.7) виражають узагальнений Дж. Максвелом закон повного струму. Зформули (8.7) видно, що вихрове магнітне поле створюється струмом провідності густиною j та струмом зміщення густиною . Густину струму зміщення вимірюють у тих самих одиницях, що й густину струму провідності, тобто в А/м2. Термін «струм зміщення», введений Дж. Максвелом на основі уявлень про існування ефіру і його зміщення в електричному полі, за сучасними поглядами на природу електромагнітного поля не є вда­лим. Справді, взявши до уваги, що , можна записати

. (8.8)

Доданок називають поляризаційним струмом зміщення. Цей струм пов'язаний зі зміщенням під дією електричного поля зв'язаних зарядів в атомах діелектриків і, отже, він має певну аналогію зі струмом провідності. Складова , яку називають чистим струмом зміщення і яка може існувати не тільки в діелектриках, а й у вакуумі, ніяких аналогів струму не має (не відбувається зміщення зарядів). Отже, цю складову називають струмом зміщення формально. Вона має єдину спільність зі струмами, яка полягає в однаковому харак­тері збудження магнітного поля, що створюється струмами провідності і зміною електричного поля . Ця складова струму зміщення не переносить зарядів, не виділяє джоулевого тепла у ваку­умі, не проявляє хімічної дії.

Система рівнянь Максвела є узагальненим математичним запи­сом основних експериментальних законів електромагнітних явищ у довільному середовищі. Ці рівняння встановлюють співвідношення між векторами електромагнітного поля Е, В, D і Н та розподілом у просторі їх джерел: електричних зарядів і струмів. Обмеження, які накладаються на застосовність цих рівнянь, такі: тіла, вміщені в поле, є нерухомими; параметри ε, та σ, які характе­ризують властивості речовини в кожній точці, є незмінними в часі і не залежать від температури та напруженості зовнішнього поля; в полі немає постійних магнітів, сегнетоелектриків та феромагне­тиків. В інтегральній формі система рівнянь Максвела записується так:

; (8.9)

; (8.10)

; (8.11)

; (8.12)

а у диференціальній –

; (8.13)

; (8.14)

; (8.15)

. (8.16)

Перше рівняння Максвела – це узагальнення закону Біо-Савара-Лапласа і є більш загальною формою закону повного струму, який відображає той експериментальний факт, що джерелами вихро­вого магнітного поля можуть бути струми провідності і струми зміщення.

Друге рівняння Максвела є математичним записом експеримен­тального закону електромагнітної індукції Фарадея. Узагальнений фізичний зміст його полягає в тому, що всяка зміна в часі магнітного поля спричиняє збудження вихрового електричного поля.

Третє рівняння Максвела відображає експериментальний факт відсутності в природі магнітних зарядів, тобто відсутність джерел магнітного поля, подібних до джерел електричного поля (зарядів).

Четверте рівняння Максвела є узагальненням на основі теореми Гауса закону Кулона і фізично вказує на існування в природі джерел електричного поля у вигляді електричних зарядів, розподілених у просторі з об'ємною густиною ρ.

Як видно, рівняння Максвела не є симетричними відносно елек­тричного і магнітного полів. Це зумовлено наявністю в природі дже­рел електричного поля (електричних зарядів) і відсутністю подібних джерел магнітного поля (магнітних зарядів, монополів). Рівняння Максвела в інтегральній формі частіше використовують для розра­хунків характеристик поля. Ці рівняння застосовують і тоді, коли є поверхні розриву, де характеристики поля і середовища змінюються стрибкоподібне. Разом з тим ці рівняння в диференціальній формі передбачають неперервність усіх характеристик поля і речовини в просторі й часі. Диференціальну систему рівнянь доповнюють гра­ничними умовами

; ;

; .

Система рівнянь Максвела разом із граничними умовами не є замкненою системою рівнянь електромагнітного поля, оскільки вони не містять ніяких констант, що характеризують властивості середовища, в якому збуджується електромагнітне поле. Ці рівняння треба доповнити так званими матеріальними рівняння­ми, які для випадку слабких полів, що порівняно повільно зміню­ються в просторі і часі для ізотропних не феромагнітних і не сегнетоелектричних середовищ, можуть бути записані у вигляді

; ; ,

де σ — питома провідність провідника.

Константи ε, та σ вводяться в теорію феноменологічно без зв'язку з атомно-молекулярною структурою речовини, їх визнача­ють експериментально.

Рівняння Максвела разом з матеріальними рівняннями і гра­ничними умовами становлять повну замкнену систему рівнянь, яка дає можливість розв'язати будь-яку задачу макроскопічної електродинаміки: відшукати вектори поля в кожній точці просто­ру в довільний момент часу за відомим розподілом електричних зарядів і струмів у функції координат і часу або ж, навпаки, визна­чити розподіл зарядів і струмів за відомими значеннями векторів поля. Для стаціонарних полів система рівнянь Максвела розпадається на дві незалежні системи: на систему рівнянь електростатичного поля

; ; ;

;

і систему рівнянь магнітостатичного поля

; ; ;

; .

Статичні електричні й магнітні поля є незалежними між собою. У цьому разі джерелами електричних полів є лише електричні за­ряди, а джерелами магнітних — лише струми провідності.

Для вакууму (; ) рівняння Максвела для електричного і магнітного полів стають симетричними

; ;

; .

У цьому разі джерелами вихрового магнітного поля є лише змінні в часі електричні поля, а джерелами вихрового електричного поля — лише змінні в часі магнітні поля.

Система рівнянь Максвела описує величезну область фізичних явищ. Ці рівняння лежать в основі розрахунків задач електро- і радіотехніки, теорії і практики магнітної гідродинаміки, нелінійної оптики, вони відіграють велику роль у розвитку фізики плазми та у вирішенні проблем термоядерного синтезу, їх застосовують при роз­рахунках прискорювачів елементарних частинок, в астрофізиці тощо.

 

 

Автоматия сердечной мышцы – это способность к самовозбуждению под влиянием импульсов, возникающих в самом органе. Ее природа до конца не выяснена, но есть данные о том, что она связана с функцией атипичных мышечных клеток пейсмекеров, заложенных в узлах сердца. Главным центром автоматии сердца является синусный узел. Биопотенциал синусного узла имеет такие особенности, которые заключаются в том, что фаза реполяризации не заканчивается восстановлением мембранного потенциала, а переходит во вторичную (диастолическую) деполяризацию, которая, достигая величины порогового потенциала, вызывает появление нового потенциала действия. Автоматией обладают все элементы проводящей системы сердца (атриовентрикулярный узел, волокна Пуркинье). Она убывает, по мере продвижения импульса, от основания сердца, к его верхушке (от венозного конца сердца к его артериальному концу). Это явление получило название закона (правила, градиента) Гаскелла.

Возбудимость сердечной мышцы имеет также свои особенности. В ответ на пороговые раздражители сердечная мышца сокращается с максимальной силой, т.е. сила сокращения сердца не зависит от силы раздражения. Сократительный миокард обладает возбудимостью, но он не обладает автоматией. В период диастолы мембранный потенциал покоя этих клеток стабилен, и его величина выше, чем в клетках водителей ритма (80-90 мВ). Потенциал действия в этих клетках возникает под влиянием возбуждения клеток водителей ритма. Оно достигает кардиомиоцитов, вызывая деполяризацию их мембран.

Потенциал действия клеток рабочего миокарда состоит из фазы быстрой деполяризации, начальной быстрой реполяризации, переходящей в фазу медленной реполяризации (фазы плато) и фазы быстрой конечной реполяризации. Важной особенностью работы сердечной мышцы является то, что длительность потенциала действия кардиомиоцитов составляет 300-400 мс, что соответствует длительности сокращения миокарда.

Между возбуждением и сокращением сердечной мышцы существует сопряжение. Инициатором сокращения миокарда, как и в скелетной мышце, является потенциал действия. Фаза деполяризации совпадает с фазой абсолютной рефрактерности. Но так как абсолютная рефрактерность в сердечной мышце очень продолжительна (до 0, 3 с), то возбудимость сердечной мышцы отсутствует во время всего периода сокращения (укорочения). Поэтому сердечная мышца не дает гладкого тетануса. Период же ее расслабления совпадает с фазой быстрой реполяризации и фазой относительной рефрактерности. В связи с этим она не дает и зубчатого тетануса. Во время фазы относительной рефрактерности сверхпороговые раздражители могут вызвать возбуждение сердечной мышцы, и в ответ наступает внеочередное ее сокращение – экстрасистола.

Особенностью сократимости сердечной мышцы является также и то, что она подчиняется закону Франка-Старлинга. Чем сильнее растянуто сердце во время диастолы, тем оно сильнее сокращается во время систолы. Кроме того, работа сердечной мышцы подчиняется закону «все» или «ничего».

Проводимость – это способность сердечной мышцы проводить возбуждение, как по волокнам рабочего миокарда, так и проводящей системы. Скорость проведения волны возбуждения в сердце такова: по мышечным сократительным волокнам предсердий до 0, 0-1, 0 м/с, в артиовентрикулярном узле – 0, 02-0, 05 м/с, в пучке Гиса – 1, 0-1, 5 м/с и в волокнах Пуркинье – 3, 0-4, 0 м/с. Медленное проведение возбуждения в атриовентрикулярном узле называют атриовентрикулярной задержкой. Она равна 0, 04-0, 06 с.

Когда мы будем изучать с Вами работу системы кровообращения, мы более подробно остановимся на гемодинамических показателях работы сердца.

Итак, сегодня на лекции Вы познакомились с основными свойствами и особенностями работы мышечной ткани.

Лекция 3.

Физиология нервной ткани (рецепторы, нервные волокна, синапсы).

Нервная ткань в организме представлена различными структурами, которые объединены в морфологическом и функциональном отношении и составляют основу нервной системы. У всех структур нервной системы есть ряд общих свойств и функций: нейронное строение, синаптическая связь между нейронами и другие. Нервная система координирует деятельность всех органов и систем организма, обеспечивая эффективное приспособление его к меняющимся условиям окружающей внешней среды, и формирует целенаправленное поведение.

Информация о состоянии внешней или внутренней среды воспринимается элементами нервной системы – рецепторами.

Рецепторы – это специализированные образования, предназначенные для восприятия раздражителей и трансформации их в нервный импульс. Различают два типа рецепторов. Сенсорные, обеспечивающие восприятие различных раздражителей внешней или внутренней среды и клеточные химические рецепторы, обеспечивающие восприятие информации, переносимой молекулами химических веществ – медиаторов, гормонов, антигенов и т.п.

Сенсорные рецепторы в зависимости от их организации принято делить на первично - и вторично-чувствующие. Первично-чувствующие рецепторы представляют собой нервные окончания афферентных проводников чувствительных нейронов. Они расположены в коже, слизистых оболочках, в кровеносных сосудах и др. Вторично-чувствующие рецепторы – это специализированные клетки, как правило, входящие в органы чувств, - зрения, слуха, вкуса и др.

Все виды рецепторов в зависимости от источника воспринимаемой информации делят на интерорецепторы и экстерорецепторы. Интерорецепторы - это рецепторы, которые воспринимают сигналы о раздражениях внутренней среды и расположены во внутренних органах. К ним относят прессорецепторы, хемо-, термо- и болевые рецепторы. Особую группу, среди них, составляют проприорецепторы (собственные рецепторы опорно-двигательного аппарата) и тканевые рецепторы (локализованные в интерстициальном пространстве и клеточной микросреде).

Экстерорецепторы – воспринимают раздражения внешних сигналов и расположены в коже и видимых слизистых (контактные – тактильные, терморецепторы, вкусовые, болевые; дистантные – фото-, фоно -, обонятельные).

Общим назначением всех сенсорных рецепторов является способность преобразовывать раздражение в биопотенциал. Раздражитель, действуя, например, на рецепторную клетку, увеличивает проницаемость ее мембраны к ионам натрия. Это приводит к созданию в ней локального или рецепторного потенциала. Он способствует выделению медиатора, который действует на нервное окончание. В результате возникает аналогичный процесс, но именуемый уже как генераторный потенциал (так как в дальнейшем генерирует нервный импульс). В последующем, вследствие разницы зарядов в окончании нервного волокна и на его протяжении между этими участками возникает потенциал действия (нервный импульс), распространяемый по нервному волокну.

Рецепторам характерен ряд свойств. Они обладают высокой возбудимостью, неодинаковой у однородной группы рецепторов в пределах рецептивного поля (скопление рецепторов), адекватностью (высокой чувствительностью к специфическим раздражителям, например, свет – рецепторы глаз), адаптацией – приспособлением к действующему раздражителю.

Нервные волокна – являются проводниками сигналов от рецепторов в нервную систему (афферентные) и от нее на периферию (эфферентные). Они различаются толщиной (диаметром), наличием или отсутствием миелиновой оболочки, скоростью проведения возбуждения.

В соответствии с принятой классификацией нервные волокна делят на три класса: «А», «В», «С». Волокна группы «А» и «В» являются миелинизированными, а «С» – немиелизированными. К классу «А» относятся толстые миелиновые волокна, которые проводят волну возбуждения со скоростью до 120 м/с (афферентные волокна от кожных рецепторов, эфферентные волокна скелетных мышц и др.). К классу «В» относят преимущественно преганглионарные аксоны нейронов вегетативной нервной системы, скорость проведения волны возбуждения в них до 15 м/с. Волокна группы «С» – постганглионарные волокна вегетативных нервов, скорость проведения волны возбуждения в них до 2-3 м/с.

У новорожденных нервные волокна хорошо проводят нервные импульсы, но скорость проведения возбуждения не превышает 50% скорости у взрослых. Постепенное увеличение скорости проведения возбуждения в нервах происходит на протяжении первых лет после рождения. У детей 5 лет скорость проведения, например, по волокнам локтевого нерва уже не отличается от скорости у взрослых. Увеличение скорости проведения с возрастом у детей обусловлено увеличением диаметра аксона, образованием миелиновой оболочки и смена непрерывного проведения на сальтаторное, увеличение амплитуды потенциала действия. В соответствии с уменьшением продолжительности потенциала действия с возрастом происходит укорочение абсолютной и относительной рефрактерных фаз нервных волокон.

В миелизированных нервных волокнах проведение волны возбуждения осуществляется скачкообразно, что связано с миелиновой оболочкой. В тех местах, где нервное волокно покрыто ею, возбудимость очень низка и волна возбуждения может возникать только в перехватных участках. Это происходит повторно по тому же принципу в каждом перехвате. Такой тип распространения волны возбуждения называется сальтаторным. В безмиелиновых нервных волокнах возбуждение распространяется по такому же механизму, но непрерывно, вдоль всей мембраны, от одного участка к другому.

Проведение волны возбуждения подчиняется некоторым закономерностям. Различают закон анатомической и функциональной целостности – проведение возможно лишь при условии анатомической целостности нервного волокна, непроводимость импульса наблюдается при нарушении физиологической целостности (блокада анастетиком, резкое охлаждение, сжатие нервного волокна). Закон двустороннего проведения волны возбуждения – при раздражении нервного волокна возбуждение распространяется по нему и в том и другом направлении. В физиологических условиях нервное волокно проводит волну возбуждения только в одну сторону. От афферентного к эфферентному звену рефлекторной дуги. Закон изолированного проведения волны возбуждения по нервному волокну (т.е. в нерве, состоящем из различной природы нервных волокон, волна возбуждения по каждому из них движется изолированно, не переходит с одного на другое).

Нервное волокно обладает относительной неутомляемостью. Она обусловлена тем, что нервное волокно при своей работе тратит мало энергии. Нервное волокно функционирует с большой недогрузкой, так как может проводить до 2000 имп/с, а проводит во много раз меньше.

Синапсы – это место передачи возбуждения с отростка одной нервной клетки на отросток или тело другой нервной клетки. Такая передача может осуществляться двумя способами – электрическим и химическим. Основной способ передачи информации между нервными клетками - химический. Химические синапсы бывают возбуждающие и тормозные.

Возбуждающий синапс состоит из пресинаптического окончания, синаптической щели и постсинаптической мембраны. Передача информацмм в таком синапсе осуществляется с помощью возбуждающих медиаторов (ацетилхолин, норадреналин, серотонин и др.). Медиатор, под влиянием импульса, пришедшего к пресинаптическому окончанию, выделяется в синаптическую щель, где вступает в контакт со специальными рецепторами на постсинаптической мембране. В результате этого увеличивается проницаемость этой мембраны по отношению к ионам натрия и наступает частичная ее деполяризация, получившая название возбуждающий постсинаптический потенциал (ВПСП). При многократном поступлении медиатора ВПСП суммируется и возникает потенциал действия.

ВПСП у новорожденных имеет большую длительность, чем у взрослых.

Тормозный синапс имеет сходное строение, но в качестве медиатора в нем выступают другие вещества (гамма – аминомаслянная кислота), которые увеличивают проницаемость постсинаптической мембраны по отношению к ионам хлора и калия. В результате этого мембранный потенциал в постсинаптической мембране увеличивается – тормозный постсинаптический потенциал (ТПСП). Он и препятствует проведению волны возбуждения. Такой механизм торможения в нервной системе называют постсинаптическим торможением.

Однако в нервной системе существует и другой тип торможения, получивший название пресинаптического. Это торможение пресинаптической мембраны возбуждающих синапсов осуществляется благодаря аксо-аксональным синапсам с проявлением в виде подавления деполяризации пресинаптической мембраны и освобождения возбуждающих медиаторов в синаптическую щель.

Один из вариантов интеграции нейронов является возможность регулировать величину поступающей информации за счет механизма обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки могут устанавливать синаптические контакты со специальными вставочными нейронами. Так, например, возникновение импульса в мотонейроне не только активирует мышечные волокна, но и через коллатерали возбуждает специальные нейроны (тормозные клетки Реншоу), которые устанавливают синаптические связи с мотонейронами и могут тормозить их (это так называемое возвратное торможение).

В целом, характеризуя особенности синаптической передачи возбуждения, необходимо отметить, что к ним относят ряд признаков. Передача возбуждения в синапсах осуществляется только в одном направлении (от пресинаптической мембраны к постсинаптической). Волна возбуждения в синапсе задерживается – синаптическая задержка (связана с тем, что для выхода медиатора и его действия нужно время). Синапс является трансформатором частоты информации (в связи с суммацией ВПСП уменьшается частота информации). Для синапса характерна высокая утомляемость (связана с расходованием медиатора).

Все эти особенности синаптической передачи лежат в основе свойств нервных центров. Нервным центром мы называем совокупность нейронов, расположенных на различных этажах центральной нервной системы.

Вся рефлекторная деятельность носит координированный характер. Рефлексы тесно увязаны между собой в целостную реакцию нервной системы на раздражение. Самым простым механизмом этой координации является иррадиация процесса возбуждения. Иррадиация – это значит распространение. Чем сильнее раздражитель, тем больше рецепторов он вовлекает в ответную реакцию и, в конечном счете, центральных нейронов. Иррадиация может быть элективной – это значит строго направленной (например, раздражение отдельных участков руки вызывает отдергивание пальцев). В случае же беспрепятственного распространения импульса по нервной системе, иррадиация становится диффузной (имеет место при патологиии).

Один из механизмов координации рефлекторной деятельности получил название дивергенция. Это контактирование одного нейрона с множеством других нейронов более высоких порядко







Дата добавления: 2014-12-06; просмотров: 949. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия