Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Управление очередями





Простейшее решение по составлению расписаний имеет так называемая задача директора. Сущность этой задачи заключается в следующем.

На прием к директору записалось несколько посетителей. Секретарь директора составил список в алфавитном порядке, указав для каждого требующуюся ему ориентировочную продолжительность приема. Фамилии записавшихся обозначены в списке их заглавными буквами (табл. 7.5).

На весь прием директор, как видно из таблицы, отвел 2 часа =120 минут, поэтому пришлось ограничиваться всего шестью посетителями. Является ли составленное расписание наилучшим?

 

Таблица 7.5

№ п/п Фамилия (начальная буква) Продолжительность приема, мин Время ожидания, мин
  Б    
  Д    
  Е    
  К    
  С    
  Т    
Суммарное время 120 мин = 260 мин = = 2 часа = 4 часа 20 мин

С точки зрения общей продолжительности приема любая очередность посетителей равнозначна: суммарное время приема не меняется при любой его последовательности. А с точки зрения ожидания в очереди? Подсчитаем общее время ожидания как сумму времени ожидания всех посетителей. В нашем алфавитном списке оно составляет 260 минут = 4 часа 20 минут. Понятно, что это время желательно было бы уменьшить: ведь время ожидания – зря потраченное время. Но вот можно ли это сделать? Приведет ли расписание с другой последовательностью приема к экономии общего времени ожидания при сохранении намеченного суммарного времени приема?

Оказывается, получение такого расписания возможно. В одном из методов исследования операций – так называемой теории расписаний – доказывается, что наименьшее суммарное время ожидания получается при составлении расписания в порядке нарастания продолжительности приема. Составим такое расписание (табл. 7.6).

Таблица 7.6

 

  № п/п Фамилия (начальная буква) Продолжительность приема, мин Время ожидания, мин
  К      
  Е      
  Д      
  Б      
  Т      
  С      
Суммарное время 120 мин = 190 мин = = 2 часа = 3 часа 10 мин  
                 

Полученное оптимальное расписание позволяет уменьшить суммарное время ожидания на 1 час 10 минут. Это значительное сэкономленное время можно использовать на полезные дела.

Задача директора находит применение не только в приемной руководителя. Ведь таким же образом можно составить и расписание очередности работы станка или другого оборудования над различными деталями. Продолжительность обработки при этом бывает различной, и нужно составить расписание таким образом, чтобы суммарное время обработки оказалось наименьшим. Это, как мы видели, дает существенный временной, а значит, и экономический эффект.

Задачу директора иногда называют задачей одного станка. Ее дальнейшим развитием является задача двух станков. В чем ее суть?

Детали обрабатываются последовательно на двух станках. В табл. 7.7 показана продолжительность этой обработки для каждой из 10 деталей на двух станках. Нумерация деталей и последовательность их обработки взяты при этом произвольно.

 

Таблица 7.7

 

Номера деталей и последовательность их обработки                    
Продолжительность обработки на станке № 1, мин                    
Продолжительность обработки на станке № 2, мин                    

 

Расчет показывает, что суммарное время обработки всех деталей составляет 118 минут. Кроме того, существует время ожидания обработки первой поданной детали на станке № 2, равное 7 минутам, и время ожидания, пока освободится станок № 2 для обработки детали № 5, равное 11 минутам. Итого – обработка всех деталей на двух станках с учетом времени ожидания продолжается 136 минут.

В теории расписаний доказывается, что в задаче двух станков для обеспечения оптимальной последовательности обработки с наименьшим временем ожидания необходимо составлять расписание, руководствуясь следующими правилами:

1) выбирается деталь с наименьшей продолжительностью обработки на одном из станков; в нашем примере это № 9;

2) выбранная деталь помещается в начало очереди, если наименьшая продолжительность обработки соответствует станку № 1, или в конец очереди, если – станку № 2; в нашем примере деталь № 9 помещается в конец очереди;

3) столбец таблицы 7.7, ранее занятый выбранной деталью, вычеркивается;

4) выбирается деталь среди оставшихся со следующей наименьшей продолжительностью обработки на одном из станков; в нашем примере – деталь № 7;

5) выбранная деталь помещается в начало или конец очереди по указанному в пункте 2 правилу; в нашем примере деталь № 7 помещается в начало очереди;

6) вычеркивается соответствующий столбец таблицы.

И так далее.

В итоге можно получить оптимальное расписание работы двух станков (табл. 7.8).

 

Таблица 7.8

 

 

Последовательность обработки (порядковый номер очереди)                    
Номер детали                    
Продолжительность обработки на станке № 1, мин                    
Продолжительность обработки на станке № 2, мин                    

 

Полученное оптимальное расписание уменьшает время ожидания обработки до 2 минут (станок № 2 ждет в самом начале, пока станок № 1 обработает деталь № 7). Общее время обработки с учетом времени ожидания тем самым сокращается до 120 минут- на 12 %.

Заметим, что, не зная описанного простого правила, эту задачу не решить и опытному специалисту. Ведь чтобы выйти на оптимальное расписание, необходимо перебрать несколько миллионов вариантов очередности.

Данное решение, так же как и предыдущее, применяется не только для станков. Оно может быть использовано для составления расписаний очередности любых работ, последовательности процедуры применения, функционирования различных технических или организационных производственных систем.

Говоря о составлении наилучших расписаний, нельзя обойти еще один важный для практики тип задач. Речь пойдет о так называемой задаче о назначениях.







Дата добавления: 2014-11-12; просмотров: 652. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия