Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Электромеханические переходные процессы ЭП с линейной





механической характеристикой при ω0= const

Анализ динамических свойств обобщенной разомкнутой электромеханической системы при рассмотрении электромеханических переходных процессов целесообразно сосредоточить внимание на характере переходных процессов электропривода при жестких механических связях. В этом случае скорость идеального холостого хода ω0 является обобщенным управляющим воздействием. Значения ω0 для электропривода постоянного тока определяются приложенным к якорной цепи напряжением uЯ, а для асинхронного электропривода – частотой тока статора f1.

Уравнения переходного процесса для этих условий получим в виде:

ω = ωс + (ωнач – ωс)e -t/Тм; (4.9)

М = МС + (Мнач - Мс)e -t/Tм. (4.10)

Графики переходного процесса, соответствующие (4.9) и (4.10), представлены на рис. 4.9. На рисунке видно, что уменьшение ускорения по мере возрастания скорости, объясняется непрерывным уменьшение динамического момента. Практически время переходного процесса tПП = (3-4)Tм, когда ω = (0,95-0,98)ωуст.

Рисунок 4.9 – Механическая характеристика (а) и переходные процессы при ТЭ=0 (б).

Рассмотрим с помощью полученных уравнений процесс реостатного пуска электропривода с линейной механической характеристикой предположив, что система управления электроприводом в процессе пуска обеспечивает автоматическое переключение ступеней пускового реостата таким образом, что начальное и конечное значения момента двигателя остаются неизменными (рис.4.10). В начальный момент пуска в силовую цепь введено полное сопротивление пускового реостата, которое ограничивает пусковой момент значением М1(пусковая характеристика 1). При увеличении скорости до значения ωкон1 выводится первая ступень пускового реостата, момент снова нарастает до значения М1, продолжается пуск по характеристике 2 и т.д. Согласно 4.9 и 4.10 движение электропривода на каждой ступени можно охарактеризовать соотношени-

ями ωi = ωсi + (ωначi– ωсi)e -t/Тмi; (4.11)

Мi = МСi + (Мначi - Мсi)e -t/Tмi., (4.12)

где ТМ = JΣi; βi – модуль жесткости i – ой пусковой механической характеристики.

 

Рисунок 4.10 – Реостатный пуск электропривода с линейной механической

характеристикой

 

Время работы на каждой ступени можно определить, подставив в (4.11) значения ωконi, а в (4.12) – соответственно Мконi = M2 и решив полученные показательные уравнения относительно времени, получим

или (4.13)

 

По мере увеличения скорости и перехода от ступени к ступени добавочное сопротивление Rя.доб или R2доб уменьшается, а модуль жесткости βi увеличивается. Это приводит к постепенному уменьшению продолжительности работы на пусковых ступенях, как это видно из рис. 4.10.

При рассмотрении процесса реверса значение имеет характер статического момента нагрузки. Если реверс осуществляется при активном моменте нагрузки электропривода, система остается линейной, а переходные процессы по скорости и моменту описываются уравнениями 4.9 и 4.10 во всем диапазоне. Механические характеристики, соответствующие рассматриваемому процессу, показаны на рис.4.11.

Рисунок 4.11 – Механические характеристики (а) и переходные

характеристики при реверсе (б).

Характеристика 1 определяет начальную скорость при реверсе ωНАЧ, соответствующую моменту МС. Для осуществления реверса на якоре двигателя постоянного тока скачком меняется полярность напряжения uЯ или на статоре асинхронного двигателя изменяется чередование фаз, а в силовую цепь двигателя для ограничения тока вводятся добавочные сопротивления (характеристика 2).

Характер изменения скорости во времени определяется 4.9 при подстановке в это выражение значения установившейся скорости с противоположным знаком:

ω = - ωС + (ωНАЧ + ωС) е t/Тм. (4.14)

Зависимость момента от времени определяется 4.10 при

МНАЧ = МС – (М1 + МСt/Тм (4.15)

Графики изменения скорости и момента приведены на рис. 4.13

 

 

Рисунок 4.12 – Механические характеристики (а) и переходные

характеристики при реверсе (б)

В случае, когда торможение противовключением используется для остановки электропривода, двигатель при скорости ω = 0 отключается от сети.

При переходе скорости через ноль при активном моменте нагрузки торможение продолжает протекать по тем же зависимостям 4.14 и 4.15 (сплошные линии), а при пассивном моменте – по уравнениям 4.9 и 4.10 (штриховые линии 3 и 4), поскольку при изменении направления вращения реактивный момент изменяет знак на противоположный.

При переходе скорости через ноль динамический момент скачком изменяется от МДИН(-0) = - (МП + МС) до значения МДИН(+0) = - (МП - МС), что влечет за собой соответствующее изменение ускорения электропривода. Этим объясняется излом в зависимостях ω(t) и М(t) при ω = 0, хорошо видный на рисунке.

 







Дата добавления: 2015-10-19; просмотров: 1023. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия