Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Магнитные моменты атомов





 

 
 

По модели атома Бора электроны вращаются вокруг ядер по некоторым орбитам (рис.17.17). Предположим, что эти орбиты - круговые с ра­диусом .

Рис.17.17.Атом как элементарный магнитный диполь

 

Орбитальный механический момент (орбитальный момент импульса) такого электрона равен

(17.28)

 

Орбитальный магнитный момент такого электрона равен

(17.29)

Здесь

(17.30)

- эффективный электрический ток – элементарный ток, созданный движущимся вокруг ядра электроном, Т - период вращения электрона, v - скорость движения электрона по орбите, е - элементарный заряд.

Отношение магнитного дипольного момента к механическому моменту называется гиромагнитным от­ношением. Орбитальное гиромагнитное отношение равно:

(17.31)

Квантовая теория доказывает, что момент импульса любой частицы - как орбитальный, так и собственный, квантуется. Величина

является естественной единицей момента импульса.

Орбитальный механический момент электрона равен

.(17.32)

Здесь - орбитальное квантовое число ( = 0,1,2,3,…(n- 1), где n – главное квантовое число).

Собственный механический момент (спин) электрона равен

,(17.33)

где s – спиновое квантовое число ( для электрона s= 1/2).

Орбитальный магнитный момент электрона равен

Дж/Т(17.34)

Собственный магнитный момент электрона равен

Дж/Т, (17.35)

где - спиновое гиромагнитное отношение.

Величина

= (17.36)

называется магнетоном Бора.

Полный магнитный момент атомов определяется суммой соб­ственных и орбитальных магнитных моментов электронов, входящих в состав атома. Собственный магнитный момент атомов определяется суммой собственных магнитных моментов электронов, входящих в состав атома. Для разных веществ собственный магнитный момент атомов разный, но всегда кратен целому числу магнетонов Бора. У металлов в твердом состоянии часть электронов коллективизируется - то есть отрывается от "своих" атомов и, следовательно, суммиро­ваться должны только те электроны, которые остались на ионе. Для некоторых веществ магнитный момент атомов равен нулю, для дру­гих - не равен. Причем так оказывается, что, например, медь в ато­марном (газообразном) состоянии имеет магнитный момент, равный одному магнетону Бора, а в твердом состоянии собственный магнит­ный момент атомов (точнее - ионов) равен нулю.

 

17.3.2.Магнитный диполь во внешнем однородном
магнитостатическом поле

Представим магнитный диполь в виде рамки с током (рис. 17.18).

Рис. 17.18. Магнитный диполь во внешнем поле

На элементы тока действуют магнитные силы (силы Ампера)

.(17.37)

Тогда: dF 1 = dF 3 = 0, так как ;

dF 2 = dF 4 = .(17.38)

Параллельные и противоположно направленные силы dF 2 и dF 4 образуют пару сил, момент которой равен

dM = dF × a = .(17.39)

Тогда суммарный момент, действующий на рамку, равен

M = I × b × B × a = I × B × S = Pm × B, (17.40)

где S = a × b – площадь рамки. В векторной форме момент равен

.(17.41)

Равновесие для диполя в магнитном поле наступает, когда момент пары сил равен нулю:

 
 

На нижерасположенном рисунке показано вращение рамки с током («магнитного диполя») в однородном магнитном поле под действием вращающего момента из произвольного положения () в положение устойчивого равновесия ().







Дата добавления: 2015-10-18; просмотров: 709. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия