Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ ПЕРЕВОЗКИ





2.1 Пункты отправления – пункты назначения (первый вид транспорта)

Как следует из исходных данных, каждый пункт назначения связан с каждым пунктом отправления единственным прямым маршрутом. Следовательно, расстояния между этими пунктами совпадают с расстояниями, приведенными в матрице расстояний между пунктами (таблица 1).

 

Таблица 1 – Расстояния между пунктами

отправления и назначения

  Расстояние, км Пункты назначения
В1 В2 В3 В4
Пункты отправления А1        
А2        
А3        
A4        

 

2.2 Пункты взаимодействия – пункты назначения (второй вид транспорта)

Как следует из исходных данных, каждый пункт назначения связан с каждым пунктом взаимодействия единственным прямым маршрутом. Следовательно, расстояния между этими пунктами совпадают с расстояниями, приведенными в матрице расстояний между пунктами (таблица 2).

 

Таблица 2 – Расстояния между пунктами

взаимодействия и назначения

  Расстояние, км Пункты назначения
В1 В2 В3 В4
Пункты взаимодействия D1        
D2        
D3        

2.3 Пункты отправления – пункты взаимодействия (первый вид транспорта)

Из матрицы расстояний видно, что прямых маршрутов между пунктами Ak (k = 1...4) отправления и пунктами Di (i = 2...3) взаимодействия нет. Необходимо построить кратчайшие маршруты, пролегающие через промежуточные пункты Es (s = 1...9), и определить длины этих маршрутов.

Сформируем матрицу расстояний между пунктами Ak отправления, промежуточными пунктами Es, пунктами Di взаимодействия; введем сквозную нумерацию узлов (таблица 3).

2.3.1 Пункт D2

Построим маршруты в узел 14 (пункт D2) из узлов 1 (пункт A1), 2 (пункт A2), 3 (пункт A3), 4 (пункт A4).

1). Приближение k=0.

Определим длины прямых (без посещения промежуточных узлов) маршрутов в узел 14. Для каждого j-го узла (j = 6, 8, 11), который соединен дугой с узлом 14 (т.е. имеется прямой маршрут), длина U0j кратчайшего маршрута принимается равной расстоянию Lj-14 между этим узлом и узлом 14; для остальных узлов значения U0j принимаются равными бесконечности:

U06 = L6-14 = 4;

U08 = L8-14 = 5;

U011 = L11-14 = 3.

Полученные маршруты и значения их длин U0j занесем в таблицу 8.

 

Таблица 3 – Матрица расстояний между пунктами отправления,

взаимодействия и промежуточными пунктами

Пункты А1 А2 А3 A4 E1 E2 E3 E4 E5 E6 E7 E8 E9 D2 D3
  Узлы                              
А1                                
А2                                
А3                                
A4                                
E1                                
E2                                
E3                                
E4                                
E5                                
E6                                
E7                                
E8                                
E9                                
D2                                
D3                                

 

2) Приближение k=1.

Определим длину L1i-j возможного маршрута из i-го узла в узел 14, проходящего через j-й узел, с числом промежуточных узлов не более одного как сумму расстояния Li-j от i-го узла до j-го узла и длины U0j прямого маршрута из этого узла в узел 14:

L1i-j = Li-j + U0j, i = 1, 2,... 15, j = 1, 2,... 15, i ≠ 14, j ≠ 14, j ≠ i.

В качестве длины кратчайшего маршрута из i-го узла в узел 14 принимается минимальное из возможных значений:

U1i = min {L1i-j}.

 

Таблица 4 – Маршруты в узел 14 с числом промежуточных узлов не более одного


Из узла 1 j L1-j U0j L11-j U11
1- 8-14          
Из узла 2 j L2-j U0j L12-j U12
2- 8-14          
Из узла 3 j L3-j U0j L13-j U13
3- 6-14          
Из узла 5 j L5-j U0j L15-j U15
5- 11-14          
Из узла 6 j L6-j U0j L16-j U16
6- 14          
Из узла 7 j L7-j U0j L17-j U17
7- 8-14          
7- 11-14          
Из узла 8 j L8-j U0j L18-j U18
8- 11-14          
8- 14          
Из узла 9 j L9-j U0j L19-j U19
9- 6-14          
9- 8-14          
Из узла 11 j L11-j U0j L111-j U111
11- 8-14          
11- 14          
Из узла 12 j L12-j U0j L112-j U112
12- 6-14          
12- 11-14          

 

 


Полученные кратчайшие маршруты из каждого узла в узел 14 и значения их длин U1j (выделены заливкой) занесем в таблицу 8.

3). Приближение k=2.

Определим длину L2i-j возможного маршрута из i-го узла в узел 14, проходящего через j-й узел, с числом промежуточных узлов не более двух как сумму расстояния Li-j от i-го узла до j-го узла и длины U1j маршрута из j-го узла в узел 14 с числом узлов не более одного:

L2i-j = Li-j + U1j, i = 1, 2,... 15, j = 1, 2,... 15, i ≠ 14, j ≠ 14, j ≠ i.

В качестве длины кратчайшего маршрута из i-го узла в узел 14 принимается минимальное значение из возможных:

U2i = min {L2i-j}.

 

Таблица 5 – Маршруты в узел 14 с числом промежуточных узлов не более двух


Из узла 1 j L1-j U1j L21-j U21
1- 7-11-14          
1- 8-14          
Из узла 2 j L2-j U1j L22-j U22
2- 5-11-14          
2- 8-14          
2- 9-8-14          
Из узла 3 j L3-j U1j L23-j U23
3- 6-14          
3- 9-8-14          
Из узла 4 j L4-j U1j L24-j U24
4- 12-11-14          
Из узла 5 j L5-j U1j L25-j U25
5- 2-8-14          
5- 11-14          
Из узла 6 j L6-j U1j L26-j U26
6- 3-6-14          
6- 9-8-14          
6- 12-11-14          
6- 14          
Из узла 7 j L7-j U1j L27-j U27
7- 1-8-14          
7- 8-14          
7- 11-14          
Из узла 8 j L8-j U1j L28-j U28
8- 7-11-14          
8- 11-14          
8- 14          
Из узла 9 j L9-j U1j L29-j U29
9- 2-8-14          
9- 3-6-14          
9- 6-14          
9- 8-14          
9- 12-11-14          
Из узла 10 j L10-j U1j L210-j U210
10- 3-6-14          
10- 9-8-14          
Из узла 11 j L11-j U1j L211-j U211
11- 8-14          
11- 14          
Из узла 12 j L12-j U1j L212-j U212
12- 6-14          
12- 9-8-14          
12- 11-14          
Из узла 13 j L13-j U1j L213-j U213
13- 9-8-14          
13- 12-11-14          
Из узла 15 j L15-j U1j L215-j U215
15- 12-11-14          

 

Полученные кратчайшие маршруты из каждого узла в узел 14 и значения их длин U2j (выделены заливкой) занесем в таблицу 8.

4). Приближение k=3.

Определим длину L3i-j возможного маршрута из i-го узла в узел 13, проходящего через j-й узел, с числом промежуточных узлов не более трех как сумму расстояния Li-j от i-го узла до j-го узла и длины U2j маршрута из j-го узла в узел 14 с числом узлов не более двух:

L3i-j = Li-j + U2j, i = 1, 2,... 15, j = 1, 2,... 15, i ≠ 14, j ≠ 14, j ≠ i.

В качестве длины кратчайшего маршрута из i-го узла в узел 14 принимается минимальное из возможных значение:

U3i = min {L3i-j}.

 

Таблица 6 – Маршруты в узел 14 с числом промежуточных узлов не более трех


Из узла 1 j L1-j U2j L31-j U31
1- 7-11-14          
1- 8-14          
Из узла 2 j L2-j U2j L32-j U32
2- 5-11-14          
2- 8-14          
2- 9-12-11-14          
Из узла 3 j L3-j U2j L33-j U33
3- 6-14          
3- 9-12-11-14          
3- 10-9-8-14          
Из узла 4 j L4-j U2j L34-j U34
4- 12-11-14          
Из узла 5 j L5-j U2j L35-j U35
5- 2-9-8-14          
5- 11-14          
Из узла 6 j L6-j U2j L36-j U36
6- 3-9-8-14          
6- 9-12-11-14          
6- 12-11-14          
6- 14          
Из узла 7 j L7-j U2j L37-j U37
7- 8-14          
7- 11-14          
Из узла 8 j L8-j U2j L38-j U38
8- 1-7-11-14          
8- 2-9-8-14          
8- 7-11-14          
8- 9-12-11-14          
8- 11-14          
8- 14          
Из узла 9 j L9-j U2j L39-j U39
9- 6-14          
9- 8-14          
9- 12-11-14          
9- 13-12-11-14          
Из узла 10 j L10-j U2j L310-j U310
10- 3-9-8-14          
10- 9-12-11-14          
10- 13-12-11-14          
10- 15-12-11-14          
Из узла 11 j L11-j U2j L311-j U311
11- 8-14          
11- 14          
Из узла 12 j L12-j U2j L312-j U312
12- 6-14          
12- 11-14          
Из узла 13 j L13-j U2j L313-j U313
13- 9-12-11-14          
13- 10-9-8-14          
13- 12-11-14          
Из узла 15 j L15-j U2j L315-j U315
15- 10-9-8-14          
15- 12-11-14          

 


 

Полученные кратчайшие маршруты из каждого узла в узел 14 и значения их длин U3j (выделены заливкой) занесем в таблицу 8.

5). Приближение k=4.

Определим длину L4i-j возможного маршрута из i-го узла в узел 14, проходящего через j-й узел, с числом промежуточных узлов не более четырех как сумму расстояния Li-j от i-го узла до j-го узла и длины U3j маршрута из j-го узла в узел 14 с числом узлов не более трех:

L4i-j = Li-j + U3j, i = 1, 2,... 15, j = 1, 2,... 15, i ≠ 14, j ≠ 14, j ≠ i.

В качестве длины кратчайшего маршрута из i-го узла в узел 14 принимается минимальное значение из возможных:

U4i = min {L4i-j}.

 

Таблица 7 – Маршруты в узел 14 с числом промежуточных узлов не более четырех


Из узла 1 j L1-j U3j L41-j U41
1- 7-11-14          
1- 8-14          
Из узла 2 j L2-j U3j L42-j U42
2- 5-2-9-8-14          
2- 8-14          
2- 9-12-11-14          
Из узла 3 j L3-j U3j L43-j U43
3- 6-14          
3- 9-12-11-14          
3- 10-9-12-11-14          
Из узла 4 j L4-j U3j L44-j U44
4- 12-11-14          
Из узла 5 j L5-j U3j L45-j U45
5- 2-9-12-11-14          
5- 11-14          
Из узла 6 j L6-j U3j L46-j U46
6- 3-9-12-11-14          
6- 9-12-11-14          
6- 12-11-14          
6- 14          
Из узла 7 j L7-j U3j L47-j U47
7- 8-14          
7- 11-14          
Из узла 8 j L8-j U3j L48-j U48
8- 1-7-11-14          
8- 2-9-12-11-14          
8- 7-11-14          
8- 9-12-11-14          
8- 11-14          
8- 14          
Из узла 9 j L9-j U3j L49-j U49
9- 6-14          
9- 8-14          
9- 12-11-14          
9- 13-12-11-14          
Из узла 10 j L10-j U3j L410-j U410
10- 3-9-12-11-14          
10- 9-12-11-14          
10- 13-12-11-14          
10- 15-12-11-14          
Из узла 11 j L11-j U3j L411-j U411
11- 5-2-9-8-14          
11- 8-14          
11- 14          
Из узла 12 j L12-j U3j L412-j U412
12- 6-14          
12- 11-14          
Из узла 13 j L13-j U3j L413-j U413
13- 9-12-11-14          
13- 10-9-12-11-14          
13- 12-11-14          
Из узла 15 j L15-j U3j L415-j U415
15- 10-9-12-11-14          
15- 12-11-14          

 

Полученные кратчайшие маршруты из каждого узла в узел 14 и значения их длин U4j (выделены заливкой) занесем в таблицу 8.

6). Приближение k=5.

Определим длину L5i-j возможного маршрута из i-го узла в узел 14, проходящего через j-й узел, с числом промежуточных узлов не более пяти как сумму расстояния Li-j от i-го узла до j-го узла и длины U4j маршрута из j-го узла в узел 14 с числом узлов не более четырех:

L5i-j = Li-j + U4j, i = 1, 2,... 15, j = 1, 2,... 15, i ≠ 14, j ≠ 14, j ≠ i.

В качестве длины кратчайшего маршрута из i-го узла в узел 14 принимается минимальное значение из возможных:

U5i = min {L5i-j}.

Результаты расчетов показывают, что длины кратчайших маршрутов U5i с числом промежуточных узлов не более пяти оказываются равными длинам кратчайших маршрутов U4i с числом промежуточных узлов не более четырех. В связи с этим дальнейшие расчеты прекращаются.

В таблице 8 для каждого приближения приведены полученные кратчайшие маршруты в узел 14 и их длины.

 

Таблица 8 – Кратчайшие маршруты в узел 14

J k=0 k=1 k=2 k=3 k=4
Маршрут U0j Маршрут U1j Маршрут U2j Маршрут U3j Маршрут U4j
      1-8-14   1-7-11-14   1-7-11-14   1-7-11-14  
      2-8-14   2-9-8-14   2-9-12-11-14   2-9-12-11-14  
      3-6-14   3-9-8-14   3-9-12-11-14   3-9-12-11-14  
          4-12-11-14   4-12-11-14   4-12-11-14  
      5-11-14   5-11-14   5-2-9-8-14   5-2-9-12-11-14  
  6-14   6-14   6-14   6-14   6-14  
      7-11-14   7-11-14   7-11-14   7-11-14  
  8-14   8-14   8-14   8-14   8-14  
      9-8-14   9-12-11-14   9-12-11-14   9-12-11-14  
          10-9-8-14   10-9-12-11-14   10-9-12-11-14  
  11-14   11-14   11-14   11-14   11-14  
      12-11-14   12-11-14   12-11-14   12-11-14  
          13-12-11-14   13-12-11-14   13-12-11-14  
          15-12-11-14   15-12-11-14   15-12-11-14  

Искомые кратчайшие маршруты в узел 14 (пункт D2)

из узла 1 (пункт А1): 1-7-11-14 (А1376-D2); расстояние перевозки 24;

из узла 2 (пункт А2): 2-9-12-11-14 (A2-E5- E8-E7-D2); расстояние перевозки 21;

из узла 3 (пункт А3): 3-9-12-11-14 (A3- E5- E8-E7-D2); расстояние перевозки 28;

из узла 4 (пункт А4): 4-12-11-14 (A4- E8-E7-D2); расстояние перевозки 18.

2.3.2Пункт D3

Построим маршруты в узел 15 (пункт D3) из узлов 1 (пункт A1), 2 (пункт A2), 3 (пункт A3), 4 (пункт A4).

1). Приближение k=0.

Определим длины прямых (без посещения промежуточных узлов) маршрутов в узел 15. Для каждого j-го узла (j = 10, 12), который соединен дугой с узлом 15 (т.е. имеется прямой маршрут), длина U0j кратчайшего маршрута принимается равной расстоянию Lj-15 между этим узлом и узлом 15; для остальных узлов значения U0j принимаются равными бесконечности:

U010 = L10-15 = 9;

U012 = L12-15 = 9.

Полученные маршруты и значения их длин U0j занесем в таблицу 12.

2). Приближение k=1.

Определим длину L1i-j возможного маршрута из i-го узла в узел 15 (пункт D3), проходящего через j-й узел, с числом промежуточных узлов не более одного как сумму расстояния Li-j от i-го узла до j-го узла и длины U0j прямого маршрута из этого узла в узел 15 (пункт D3):

L1i-j = Li-j + U0j, i = 1, 2,... 14, j = 1, 2,... 14, j ≠ i.

В качестве длины кратчайшего маршрута из i-го узла в узел 15 (пункт D3) принимается минимальное из возможных значений:

U1i = min {L1i-j}.

 

Таблица 9 – Маршруты в узел 15 с числом промежуточных узлов не более одного


Из узла 3 j L3-j U0j L13-j U13
3- 10-15          
Из узла 4 j L4-j U0j L14-j U14
4- 12-15          
Из узла 6 j L6-j U0j L16-j U16
6- 12-15          
Из узла 9 j L9-j U0j L19-j U19
9- 10-15          
9- 12-15          
Из узла 10 j L10-j U0j L110-j U110
10- 15          
Из узла 11 j L11-j U0j L111-j U111
11- 12-15          
Из узла 12 j L12-j U0j L112-j U112
12- 15          
Из узла 13 j L13-j U0j L113-j U113
13- 10-15          
13- 12-15          

Полученные кратчайшие маршруты из каждого узла в узел 15 и значения их длин U1j (выделены заливкой) занесем в таблицу 12.

3). Приближение k=2.

Определим длину L2i-j возможного маршрута из i-го узла в узел 15 (пункт D3), проходящего через j-й узел, с числом промежуточных узлов не более двух как сумму расстояния Li-j от i-го узла до j-го узла и длины U1j маршрута из этого узла в узел 15 (пункт D3) с числом узлов не более одного:

L2i-j = Li-j + U1j, i = 1, 2,... 14, j = 1, 2,... 14, j ≠ i.

В качестве длины кратчайшего маршрута из i-го узла в узел 15 (пункт D3) принимается минимальное из возможных значений:

U2i = min {L2i-j}.

 

Таблица 10 – Маршруты в узел 15 с числом промежуточных узлов не более двух


Из узла 2 j L2-j U1j L22-j U22
2- 9-10-15          
Из узла 3 j L3-j U1j L23-j U23
3- 6-12-15          
3- 9-10-15          
3- 10-15          
Из узла 4 j L4-j U1j L24-j U24
4- 12-15          
Из узла 5 j L5-j U1j L25-j U25
5- 11-12-15          
Из узла 6 j L6-j U1j L26-j U26
6- 3-10-15          
6- 9-10-15          
6- 12-15          
Из узла 7 j L7-j U1j L27-j U27
7- 11-12-15          
Из узла 8 j L8-j U1j L28-j U28
8- 9-10-15          
8- 11-12-15          
Из узла 9 j L9-j U1j L29-j U29
9- 3-10-15          
9- 6-12-15          
9- 10-15          
9- 12-15          
9- 13-10-15          
Из узла 10 j L10-j U1j L210-j U210
10- 15          
Из узла 11 j L11-j U1j L211-j U211
11- 12-15          
Из узла 12 j L12-j U1j L212-j U212
12- 9-10-15          
12- 13-10-15          
12- 15          
Из узла 13 j L13-j U1j L213-j U213
13- 9-10-15          
13- 10-15          
13- 12-15          
Из узла 14 j L14-j U1j L214-j U214
14- 6-12-15          
14- 11-12-15          

 

Полученные кратчайшие маршруты из каждого узла в узел 15 и значения их длин U2j (выделены заливкой) занесем в таблицу 12.

4). Приближение k=3.

Определим длину L3i-j возможного маршрута из i-го узла в узел 15, проходящего через j-й узел, с числом промежуточных узлов не более трех как сумму расстояния Li-j от i-го узла до j-го узла и длины U2j маршрута из этого узла в узел 15 с числом узлов не более одного:

L3i-j = Li-j + U2j, i = 1, 2,... 14, j = 1, 2,... 14, j ≠ i.

В качестве длины кратчайшего маршрута из i-го узла в узел 15 принимается минимальное из возможных значений:

U3i = min {L3i-j}.

 

Таблица 11 – Маршруты в узел 15 с числом промежуточных узлов не более трех


Из узла 1 j L1-j U2j L31-j U31
1- 7-11-12-15          
1- 8-9-10-15          
Из






Дата добавления: 2015-10-19; просмотров: 409. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия