Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИЛОЖЕНИЕ. Результативные таблицы и графики





Результативные таблицы и графики

Распечатка Рабочего файла(Лист 1)


 

 
 

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА СТАТИСТИКИ

 

 

О Т Ч Е Т

о результатах выполнения

компьютерной лабораторной работы

 

Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel

 

 

Вариант № ____

 

Выполнил: ст. III курса гр.________________

______________________

ФИО

Проверил:_________________________

ФИО

 

Москва ………..г.


Постановка задачи статистического исследования

Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1.

В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.

Таблица исходных данных

В процессе статистического исследования необходимо решить ряд задач.

1. Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

2. Установить наличие корреляционной связи между признаками Х и Y методом аналитической группировки.

3. Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения η;.

4. Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r.

5. Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:

а) значимость и доверительные интервалы коэффициентов а0, а1;

б) индекс детерминации R2 и его значимость;

в) точность регрессионной модели.

6. Дать экономическую интерпретацию:

а) коэффициента регрессии а1;

б) коэффициента эластичности К Э;

в) остаточных величин εi.

7. Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм.


2. Выводы по результатам выполнения лабораторной работы [3]

Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.

Вывод:

Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет (не имеет) место статистическая связь. Предположительный вид связи – линейная (нелинейная) прямая (обратная).

Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.

Корреляционная связь – важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения результативного признака Y (усредняются результативные значения , полученные под воздействием фактора ). Для выявления наличия корреляционной связи используется метод аналитической группировки.

Вывод:

Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Х закономерно (незакономерно) увеличиваются (уменьшаются) средние групповые значения результативного признака . Следовательно, между признаками Х и Y ………………………………....................

……....................................................................................................................................

Задача 3. Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.

Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η; – эмпирическое корреляционное отношение, задаваемое формулой

,

где и - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии означает, что оценивается мера влияния признака Х на Y).

Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:

Значениеη 0,1 – 0,3 0,3 – 0,5 0,5 – 0,7 0,7 – 0,9 0,9 – 0,99
Сила связи Слабая Умеренная Заметная Тесная Весьма тесная

Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.

Вывод:

Значение коэффициента η = ……………………, что в соответствии с оценочной шкалой Чэддока говорит о …………………………степени связи изучаемых признаков.

Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r.

4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком X и результативным признаком Y.

Инструмент Регрессия на основе исходных данных (xi, yi), производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.

Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.

Вывод:

Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения …………………….

4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.

Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин " Множественный R ").

Вывод:

Значение коэффициента корреляции r =……………, что в соответствии с оценочной шкалой Чэддока говорит о..….………………………. степени связи изучаемых признаков.

Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.

Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.

Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:

1) оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;

2) определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2;

3) проверка значимости уравнения регрессии в целом по F -критерию Фишера;

4) оценка погрешности регрессионной модели.

5.1. Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов

Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi, yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:

1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);

2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.

Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:

– значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;

– рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;

– доверительные интервалы коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.

5.1.1. Определение значимости коэффициентов уравнения

Уровень значимости – это величина α; =1– Р, где Р – заданный уровень надежности (доверительная вероятность).

Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности у ровень значимости равен α = 1 – 0,95 = 0,05. Этот уровень значимости считается заданным.

В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется у ровень его значимости αр,который указан в результативной таблице (табл. 2.7 термин "Р- значение "). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр,меньше заданного уровня значимости α;= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.

Примечание. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.

Если незначимым (случайным) является коэффициент регрессии а1,то взаимосвязь между признаками X и Y в принципе не может аппроксимироваться линейной моделью.

Вывод:

Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =…..………… Так как он меньше (больше) заданного уровня значимости α;=0,05, то коэффициент а0 признается типичным (случайным).

Для коэффициента регрессии а1 рассчитанный уровень значимости есть αр =………..…… Так как он меньше (больше) заданного уровня значимости α;=0,05, то коэффициент а1 признается типичным (случайным).

5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности

Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р = 0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.

 

Таблица 2.9







Дата добавления: 2015-06-15; просмотров: 488. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия