Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 4. Средние величины





Изучение темы начинается с вопросов о роли и значении средних величин (далее просто средних) в научном исследовании и об условиях их правильного применения.

Правильное применение средних возможно лишь на основе предварительной группировки: выделения качественно однородных совокупностей и расчленения явления на части в зависимости от различия условий, под влиянием которых явление складывается.

Под средней величиной в статистике понимают показатель, который характеризует типичный уровень изменяющегося признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

При изучении отдельных видов средних величин рекомендуется четко представлять методику их расчета и область применения. Наиболее распространенной формой средних величин является средняя арифметическая, расчет которой производится путем деления суммы всех значений изучаемого признака на их количество.

Формула расчета:

, (4.1)

где – среднее значение изучаемого признака;

– конкретное значение этого признака;

– число единиц, значение признака которых изучается.

Если какое-то значение признака повторяется у нескольких единиц, то в этом случае формула расчета средней арифметической имеет такой вид:

, (4.2)

где – частота повторения отдельных вариантов признака.

Расчет средней по формуле (5.1) называется способом простой средней арифметической, а по формуле (5.2) – средней арифметической взвешенной.

Средняя хронологическая используется в тех случаях, когда имеются данные наблюдения на определенные моменты времени; ее расчетная формула имеет вид:

. (4.3)

Средняя геометрическая используется для анализа темпов роста явлений и вычисляется по следующим формулам:

, (4.4)

, (4.5)

где – первый (базисный) уровень ряда динамики;

– последний уровень ряда динамики;

– число уровней (или периодов);

– цепные коэффициенты роста данного ряда динамики.

Взвешенные средние широко применяются при обработке данных текущего наблюдения по производственным участкам и цехам предприятия, обобщении материалов отчетности предприятий и организаций. Студент должен хорошо знать способы вычисления этих средних, принципы выбора весов и условия, при которых применяются взвешенная средняя арифметическая или гармоническая.

Особого рода средними, используемыми в экономическом анализе для изучения структуры вариационного ряда, являются мода и медиана.

Медиана – это значение признака у той единицы совокупности, которая расположена в середине упорядоченного ряда. По данным интервального вариационного ряда, который предварительно ранжирован, медиану определяют по формуле:

, (4.6)

где – нижняя граница медианного интервала;

– величина медианного интервала;

– полусумма частот всех интервалов;

– сумма частот до медианного интервала;

частота медианного интервала.

Если ряд дискретный, то медианой является срединное значение признака, и применение формулы не требуется.

Мода – это наиболее часто встречающееся значение признака. В интервальном вариационном ряду ее определяют по формуле:

, (4.7)

где – нижняя граница модального интервала;

– величина модального интервала;

– частота модального интервала;

– частота интервала, предшествующего модальному;

– частота интервала, следующего за модальным.

В дискретном ряду мода – это вариант признака, имеющий наибольшую частоту.







Дата добавления: 2015-06-15; просмотров: 638. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия